
1.
2.
3.
4.
5.
6.

1.
2.

a.
b.

3.
4.
5.

OpenSCD next architecture

To solve some limitation with the ; and improved architecture is created. The Motivation for creating a new generation of OpenSCD monolith architecture
OpenSCD-next architecture:

Make it more easy to build your own distribution
Make it more easy to create custom plug-ins
Less tangled code
Reusable code
Faster development speed (once it is ready)
Plug-ins can be build in any code language and framework (as long as they adhere to the specifications)

OpenSCD next product vision

Next Generation

OpenSCD NEXT is the next generation version of OpenSCD aimed at flexibility and extensibility. NEXT features a modular structure that enables third
parties to develop on top of OpenSCD CORE, thus enabling the community to add plugins, add-ons and components on top of OpenSCD CORE, while
core functionality can be maintained separately.

Community focused

OpenSCD NEXT has a focus on community, and is essentially a tool for collaboration, in an environment supporting the energy transition. It enables third
parties to easily participate.

Marketplace

OpenSCD NEXT features a bazaar model, where providers can develop functionality together and share what they have developed in a generic way for
substation configuration.

Create your own packages

OpenSCD NEXT enables providers to dynamically create packages for their own purposes or packages that provide generic value for the community.

Architecture principles for OpenSCD-core
Some architecture principles are written in order to guide the and implementation.architecture

Use the standard webAPI as much as possible (developer.mozilla.org)
Interaction with the SCL should be easy

Libaries for specfic taks
Do and undo functionality

Integrate small functionality within wider platform quickly (easy to deploy)
Clear and documented API's for plug-in authors
Plug-in authors can use components to speedup the development and give a consistent look and feel (optional)

This is in DRAFT. Feedback or improvements are welcome using the comment feature in confluence.

Practical example of the current limitations

Practical example for CoMPAS. CoMPAS currently relies on "fork" of OpenSCD in order to add the needed functionality:

com-pas/compas-open-scd: A substation configuration description editor for projects using SCL IEC 61850-6 Edition 2 or greater (github.com)

The goal for CoMPAS would be to add the CoMPAS specific code as add-on to OpenSCD-next in form of plug-ins. The current "fork" will no
longer be needed. CoMPAS will just make a distribution of OpenSCD including the CoMPAS plugins/extensions.

https://wiki.lfenergy.org/display/SHP/OpenSCD+monolith+architecture
https://github.com/com-pas/compas-open-scd

Technical implications:

Modular and loosely coupled

Limit dependencies

General functional aspects of OpenSCD next
Embed OpenSCD next as embedded application is not foreseen yet. It might be possible with an iframe. The current technology might already
allow it.
Support multiple OpenSCD instances is not supported
OpenSCD provides: front-end for graphical interaction

Solution: OpenSCD-core architecture overview

The OpenSCD-next architecture consist of 4 major software components:

OpenSCD-core
Plug-ins
Components
Add-ons

Overview of the global architecture

Components and their interaction. OpenSCD-core loads all the "components/plugins etc".

A plug-in can use EditEvent to make modifications in OpenSCD-core.

OpenSCD-Core
OpenSCD-core is the main application of OpenSCD-next. OpenSCD-core will be loaded once people open the application. OpenSCD-core sets the
requirements and API's for the .plug-ins

Functionality should should be stable and long lasting in order to have stable ecosystem.

Selection criteria for incorporate stuff into OpenSCD-core:

Re-usable for many plug-in authors
Should be maintainable in the long run in order to have a stable ecosystem.

OpenSCD-core consists of the WebComponent, which is responsible for loading plugins and addons.open-scd

The WebComponent is the outer shell of OpenSCD, containing limited functionality in order to make it flexible.open-scd

Editing of a (SCL) Document be handled by OpenSCD-core. OpenSCD-core provides an API for document editing by listening to should CustomEvents.
These CustomEvents can be dispatched by plug-ins.

Based on a configuration file OpenSCD-Core loads the different plug-ins/addons etc.

Functionality of OpenSCD-core:

Loading addons/plug-ins

Display the selected plug-in

Handling SCL edits

Host the SCL doc editing

SCL doc editing

The SCL doc editing is reponsible for manipulating the SCL. It takes care of the right sequence/order of SCL edits. For more information see OpenSCD-
.core handling SCL Edits

OpenSCD Plug-ins

An OpenSCD plug-in is an addition to OpenSCD-Core to add . This could be generic 61850 functionality or vendor/utility specific functionality. functionality
Examples: Datatemplate editor, substation-section editor, GOOSE editing, validation etc.

OpenSCD-Core supports 2 types of plug-ins: menu plug-ins and editor plug-ins. These plug-ins have a different behavior/requirements.

https://wiki.lfenergy.org/display/SHP/OpenSCD-core+plug-in
https://wiki.lfenergy.org/o/IypeaKOoA3x5JCdKgVQK/s/Q3RJv4ObLUg8vI2jwLxX/~/changes/4/architecture/scl-editing
https://wiki.lfenergy.org/display/SHP/OpenSCD-core+handling+SCL+Edits
https://wiki.lfenergy.org/display/SHP/OpenSCD-core+handling+SCL+Edits

For more information see: OpenSCD-core plug-in

OpenSCD Components

OpenSCD Components are reusable WebComponents. Components be used by plug-ins to build functionality faster, plug-in authors can also decide can
to build everything themselves.

Filtered-lists

Examples: filtered-lists are used in many plug-ins. In order to re-use the code, a filtered-list component is build and published on NPM.

OpenSCD Addons

OpenSCD addons are an extension of OpenSCD-Core to split functionality. This functionality can be pure technical and requires no custom UI. Examples
for some OpenSCD add ons are Wizarding, Validating, Waiting, etc.

OpenSCD addons will be a replacement for current mixins, so there is no/less need to OpenSCD-Core and to build mixins on top of the fork. fork
Addons allow experiments with (potential) new core functionality. Successful addons can be merged into OpenSCD-core.

Wizarding

Example: Wizarding API is hard to make perfect in the first run. If started with an addon for wizarding, we can experiment/use it. If it turns out that the
addon is missing crucial functionality. We can introduce a new add-on next to the old addon (with its limitations).

Solution: There will be 2 POC's by and . Comparing those will give the best solution.Tamás Russ pascal wilbrink

For more information about mixins: TypeScript: Documentation - Mixins (typescriptlang.org)

https://wiki.lfenergy.org/display/SHP/OpenSCD-core+plug-in
https://wiki.lfenergy.org/display/~truss
https://wiki.lfenergy.org/display/~pascalwilbrink
https://www.typescriptlang.org/docs/handbook/mixins.html

	OpenSCD next architecture

