Continuous integration on SEAPATH

A continuous integration (Cl) process has been implemented in order to deploy and test a custom cluster before merging any pull requests. Source code
can be found in https://github.com/seapath/ci.

The Cl is based on GitHub action and has been completely dockerized in order to guarantee its reproducibility and scalability.

Description

The Cl operate on a SEAPATH operating system. To avoid many problems, all machines are already flashed with SEAPATH and the CI will only configure
the systems using the Ansible playbooks. This implies the iso creation and the boot process can't be tested.

All machines are linked to a self-hosted runner, on which the GitHub Action for the CI will run.
The ClI job is divided into different stages :

Fetch the sources of the pull request to test

Launch the Debian configuration and hardening using Ansible playbooks

Deploy Cukinia and launch tests
Generate and upload the test report

Tests

The Cl use Cukinia, a system-level validation framework as testing tool, all tests launched on Debian are available at https://github.com/seapath/cukinia-
tests/tree/main.

The CI performed the following tests:

check regression on SEAPATH Ansible configuration by calling these Ansible playbooks as it will be in a regular SEAPATH setting up
functional system tests, which check the OS configuration to unsure all machines are well configured and there are no regression
hypervisor tests, to verify we can deploy VMs on hypervisors

cluster tests, to check the cluster are well setup and the share storage works

security tests, to unsure security hardening is correctly applied

network connections tests, which verify that all network interface and all network works by making connections among them

Quick IEC 61850 Sample values receptions and latency measurement tests

PTP tests, to verify PTP clock is well synchronized in the host and the VM

No Real-time, complex IEC 61850, complex cluster tests or long times latency tests are run on the ClI for now. These tests are too long to be run on each
GitHub pull request, so it is planned to integrate these tests at every release of the SEAPATH project.

Repo rt

The Cl can fail in three ways :
® The configuration of SEAPATH is wrong and the associated Ansible playbook fail
® The tests fail
® The tests on VM fail

The failure of the configuration can be observed in the CI logs.

After the configuration, all tests will be gathered in a test report. All the test contained in the report must pass for the pull request to be merged.

https://github.com/seapath/ci
https://github.com/savoirfairelinux/cukinia
https://github.com/seapath/cukinia-tests/tree/main
https://github.com/seapath/cukinia-tests/tree/main

Tests hypervisorsecurity for virtu-cil

SEAPATH-00033 [etc/group is consistent PASS
SEAPATH-00033 fetc/gshadow is consistent PASS
SEAPATH-00034 fetc/group does not include extra group PASS
SEAPATH-00034 fetc/gshadow does not include extra group PASS
SEAPATH-00008 Slab merging is disabled oncmdline PASS
SEAPATH-0000% Kernel Page Table Isolation is always enabled on cmdline PASS
SEAPATH-00010 SLUE redzoning and sanity checking enabled on cmdline PASS
SEAPATH-00047 fetc/passwd is consistent PASS
SEAPATH-00048 Jetc/passwd does not include extra user PASS
SEAPATH-00046 etc/shadow is consistent PASS
SEAPATH-00015 Vulnerabilities sysfs entry exist PASS
SEAPATH-00017 System is not vulnerable to | meltdown PASS
SEAPATH-00017 System is not vulnerable to : 11t PASS
SEAPATH-00017 System is not vulnerable to | spectre_v1 PASS
SEAPATH-00017 System is not vulnerable to : spectre_v2 PASS
SEAPATH-00012 admin user exists PASS
SEAPATH-00013 admin has a password PASS

+ number of tests: 17

» number of failures: 0

Tests hypervisoriommu for virtu-cil

SEAPATH-00030 iommu enabled in passthroughmode PASS
SEAPATH-00031 iommuis loaded PASS
SEAPATH-00032 iommuis populated PASS
SEAPATH-00050 Linux kernel iommu : INTEL_IOMMU is enabled PASS
SEAPATH-00050 Linux kernel iommu : AMD_IOMMU is enabled PASS
SEAPATH-00050 Linux kernel iommu : AMD_IOMMU_V2is enabled PASS
SEAPATH-00050 Linux kernel iommu : IOMMU_IOVA is enabled PASS

+ number of tests: 8

» number of failures: 0

Using the CI

The Cl is actually running on the debian-main branch and on the main branch of the Ansible repository
Every pull request need to pass the tests to be merged.

After opening a pull request, wait for an approval of a member of SEAPATH. This will trigger the CI as a GitHub Action. The logs of the CI are visible on
your pull request page, either in the "Conversation" tab or the "Checks" tab.
All running actions are also visible in the Actions tab on the repository.

The complete CI takes about 15 minutes. At the end, the test report is available through a link given in the log of the GitHub Action, at the end of the step
"Launch test" step.

Access the logs of the ClI on the pull request "Conversation" tab

https://github.com/seapath/ansible/tree/debian-main
https://github.com/seapath/ansible

Some checks were not successful Hide all checks
1 failing and 1 successful checks

% Cl debian / CI (pull_request) Failing after 22m (Required)
v &/ DCO—DCO ('Required) Details
This pull request is still a work in progress Ready for review

Draft pull requests cannot be merged

Rebase and merge - or view command line instructions.

Location of the link of the test report

(M Summary

Jobs

| @c

Launch test

Run details

% Usage
S Workflow file

Ansible's configuration has falil, the tests were not launched, and the link was not given.

M Summary

Jobs

I oc Set up job
Run details Initialize sources
(» Usage Configure Debian

&) Workflow file Launch test

Clean

Complete job

Host your own ClI

Preparing a cluster
Hosting your own Cl on SEAPATH first required having a cluster up and ready.

You need:

a SEAPATH cluster (all instructions for cluster configuration can be found on the SEAPATH architecture repository)
a machine (or virtual machine) to host the GitHub runner

a PTP clock

a machine time synchronized with PTP clock with docker to host SV Tools (an IEC 61850 Sample Value simulator)

https://github.com/seapath/seapath-architecture

process bus

ptp
cluster network

controlfadmin network

VM control
VM CI HIL
Menberg 7| |

Clock

PTP boundary clock

IECE135(HIL simulator
M

(D IEC61850 HIL simulator is not needed because it is not used for the moment.

Preparing the ClI
The runner used to configure the machines will be used for the CI. Docker and cqfd are the only required software to launch it.

If you choose GitHub Actions to trigger the Cl, you can follow this guide to link your self-hosted runner with your repository. Otherwise, another trigger has
to be configured for the chosen CI solution.

The CI script launched with the Cl is launch.sh on the SEAPATH ClI repository. It will have to be adapted to fit with your repository links and your
inventories and keys on your runner.

This section will be expanded in the future for a better understanding.

https://github.com/savoirfairelinux/cqfd
https://docs.github.com/en/actions/hosting-your-own-runners/adding-self-hosted-runners
https://github.com/seapath/ci/blob/main/launch.sh

	Continuous integration on SEAPATH

