
The vm_manager tool
This page describe the vm_manager tool: https://github.com/seapath/vm_manager

Deploying a virtual machine on a SEAPATH cluster requires to handle many elements: ceph, qemu, libvirt, corosync. vm_manager was created as a
wrapper around these components.

The cluster_vm Ansible module is wrapper above vm_manager cli. A more detailed documentation can be .generated from sources

It can be called from a playbook to perform actions on VMs. For instance, an example of playbook that creates a VM from a predefined image disk and
XML Libvirt configuration would be:

- name: Create and start guest0
 cluster_vm:
 name: guest0
 command: create
 system_image: my_disk.qcow2
 xml: "{{ lookup('file', 'my_vm_config.xml', errors='strict') }}"

Playbooks can be executed in any hypervisor. Other playbook examples are stored in the example/playbooks/vm directory.

This section describes the VM architecture and the cluster_vm commands from a high-level point of view. Please read cluster_vm module documentation fo
r further information.

You will also find information on how to troubleshoot problems related to VM management on page .Troubleshooting with vm_manager

VM status

In the SEAPATH cluster the VMs can have several statuses:

Undefined: The VM does not exist yet.
Disabled: The VM exists and its data disk has been created, but it is not enabled to be used on the cluster.
Starting: The VM is enabled and performing an operation of start.
Started: The VM is enabled and started. Note: This doesn’t mean that the VM is ready and has finished booting, which can take some time.
Stopping: The VM is enabled and performing a power-off action.
Stopped: The VM is enabled and stopped.
Failed: The VM is enabled, but it has failed to start.

VM architecture

The diagram below describes how a VM is stored in the SEAPATH cluster. All non-volatile VM data is stored using Ceph, which is in charge of the
maintenance of the data-store and data replication between all the hypervisors.

VM is stored in a Ceph RBD group named as the VM name
VM contains:

Metadata
Image data disk
Image data snapshots

Metadata provides information associated with a VM. It consists of a list of pairs (key, value) that are set at the moment of the VM creation. You can define
as many metadata fields as you want but some keys are reserved:

KEY VALUE MEANING

vm_name VM name

_base_xml Initial Libvirt XML VM configuration

xml Libvirt XML file used for the VM configuration. It is autogenerated by modifying the _base_xml file.

vm_manager is not useful for a standalone SEAPATH hypervisor. If you wish to deploy a VM for that use case, refer to the deploy_vms_standal
 playbook.one.yaml

Like other Ansible modules, the cluster_vm documentation can also be displayed by executing ansible-doc cluster_vm command from the
Ansible root repository.

https://github.com/seapath/vm_manager
https://github.com/seapath/ansible/blob/master/README.adoc#generate-seapath-ansible-modules-documentation
https://wiki.lfenergy.org/display/SEAP/Troubleshooting+with+vm_manager
https://github.com/seapath/ansible/blob/main/playbooks/deploy_vms_standalone.yaml
https://github.com/seapath/ansible/blob/main/playbooks/deploy_vms_standalone.yaml

VM deployment

The VM data disk is set when creating a new VM or cloning an existing one, as described in the schemas below.

Create a VM

Create a VM from scratch by importing an image disk with the create command:

- name: Create and start guest0
 cluster_vm:
 name: guest0
 command: create
 system_image: my_disk.qcow2
 xml: "{{ lookup('file', 'my_vm_config.xml', errors='strict') }}"

Clone a VM

Copy an existing VM with the clone command:

- name: Clone guest0 into guest1
 cluster_vm:
 name: guest1
 src_name: guest0
 command: clone

VM network configuration

The network configuration inside the VMs is done with the playbook file cluster_setup_network.yaml. You need to use an inventory that describes the VMs
instead of the cluster as in the example vms_inventory_example.yaml file.

VM snapshots

Disk snapshots can be used to save the disk image data at a given moment, that can be later recovered.

Snapshot creation

Snapshots can be created when the VM is stopped or running, but if you perform a snapshot when the VM is running, only the data written on the disk will
be saved.

Volatile data such as the content of the RAM or the data not written on the disk will not be stored on the snapshot.

https://github.com/seapath/ansible/blob/master/examples/inventories/vms_inventory_example.yaml

- name: Create a snapshot of guest0
 cluster_vm:
 name: guest0
 command: create_snapshot
 snapshot_name: snap1

Snapshot rollback

You can restore the VM to a determined previous state by performing a rollback operation based on a snapshot. The data saved during the snapshot
operation will be restored and replace the current disk image data. All current disk image data will be lost. The rollback operation does not remove the
snapshot, it is possible to reuse the snapshot to re-apply a later rollback.

The rollback operation must be applied on a disabled machine. So if the VM is enabled, it will be automatically disabled before the rollback and re-enabled
once the operation is finished.

- name: Rollback VM guest0 to snap0
 cluster_vm:
 name: guest0
 command: rollback_snapshot
 snapshot_name: snap0

Other snapshot operations

With the cluster_vm module it is also possible to:

List all snapshots
Remove a particular snapshot
Remove multiple snapshots by purging:

All of them
The n oldest one
The oldest ones to a specific date

An example playbook that removes the snapshots created before a determined date would be:

Example - Remove old snapshots
- name: Remove snapshots of guest0 older than January 24th 2021 8:00 AM
 cluster_vm:
 name: guest0
 command: purge_image
 purge_date:
 date: '2021-01-24'
 time: '08:00'

The purge operation can be performed regularly to avoid over space. This can be easily done with a tool like or .Ansible Tower AWX

Update a VM

Updating the VM data inside the VM

Updating the VM data cannot be performed by the cluster_vm module, but you can use its snapshot system to cancel the update in case of error as
described in the diagram below. To achieve this, you can base your playbook on the .update skeleton example

Updating VM configuration or metadata

The VM configuration and metadata are immutable. To change them, you must create a new VM from the existing one with the clone command.

The file cupdate configuration example an help you to create a playbook to achieve this operation according to the following diagram.

https://www.ansible.com/products/tower
https://github.com/ansible/awx
https://github.com/seapath/ansible/blob/master/examples/playbooks/vm/update_skeleton.yaml
https://github.com/seapath/ansible/blob/master/examples/playbooks/vm/update_config_skeleton.yaml

	The vm_manager tool

