
Resilient Information Architecture

Platform for Smart Grid

Gabor Karsai (Vanderbilt)

Project Overview

2

RIAPS Project Summary

3

 Goal: To create an open source software platform to run

Smart Grid applications and demonstrate it through

selected applications. A software platform defines:

 Programming model (for distributed real-time software)

 Services (for application management, fault tolerance, security,

time synchronization, coordination, etc.)

 Development toolkit (for building and deploying apps)

 Uniqueness:

 Focus on distributed applications - not only on networking

 Focus on resilience – services for fault recovery

 Focus on security – maintain confidentiality, integrity, availability

Example Power System:

IEEE 30 bus system

Project Summary - Motivation

4

Control Room

Example Power System:

IEEE 30 bus system

Project Summary - Motivation

4

Control Room

Communication Network

Sensors Actuators
Computing Platform

RIAPS Network

I/F

RIAPS Node:

RIAPS: Run-time Platform

5

RIAPS Elements: Run-time Platform

6

 Software Component Framework:

 Supports componentized, distributed, real-time apps

 Core elements: messaging, scheduling, resource / fault

management, logging, lifecycle, security, persistence

 Software Platform Managers:

 Provide global services available to all apps

 Core elements: discovery, app management, resource / fault

management, logging, distributed coordination, time

synchronization, security, device interface management,

persistence

RIAPS Elements: Development tools

7

Code Generator

Glue code, config., etc.
Business Logic

Code

Developer

The MDE augments the IDE-based

development process with a DSML

that is used in verification and in

generating infrastructure code for

the applications.

Platform Details

VU

8

Design: Overall Architecture

9

OS Kernel

Component Framework Platform Managers

Applications

Remedial Action
Scheme

Microgrid
Management

State
Estimation

Energy
Management

Component Scheduling
Event/Time-triggered

Component Interactions
Component Messaging

Lifecycle Management
Initialize, Start, Stop,
Checkpoint, Destroy

Language Run-time
C/C++, etc.

Security
Access Control

Secure Communications
Secure Information Flows

Application Manager
Application Management and

Deployment Service

Coordination Manager
Distributed Coordination Service

Device Manager
Device Interface Service

Time Manager
Time Synchronization Service

Fault Manager
Fault Management Service

Security Manager
Security Management Service

Persistence Manager
Persistence Service

Log Manager
Logging Service

Persistence
Persistence Service

Logging
Logging Service

Fault Management
Fault Management Service

Discovery Manager
Broker Service

Resource Manager
Resource Management Service

Data
Analytics

Distributed
SCADA

Resource Management
Resource Management Service

Hardware Platform

Device Interfaces
(Sensors/Actuators/Communications/GPS/…)

Network Interface(s) Storage

….

R
IA

P
S

Software Platform

10

 Basic capability:

 Software component framework for distributed apps

 Core platform services: deployment, discovery, devices

 Domain-specific language for system modeling ; generators

 Example distributed app: microgrid controls, remedial action
scheme

 Enhanced capability:

 Distributed coordination

 Time-sensitive messaging

 Resource management

 Fault management

 Example distributed app: transactive energy

Software Platform Details

Component-based development

11

 Anatomy of a component
Component can be:

- Event-triggered

- Time-triggered

Components interact via

messages

Components have a single

execution thread

Software Platform Details

Component-based development

12

 Anatomy of an application

Software Platform Details

Component-based development

13

 RIAPS Component Model - Rules

 Each component runs in its own, singleton ‘executor’ thread

 Component operations executed one-by-one by that thread

 Components interact with each other using messages only

 Rationale

 Multi-threaded code is complicated, tricky to write, and

possibly dangerous

 App developing power system engineers should not have to

learn multithreading

The component model is lightweight – minimal overhead is imposed by the framework.

Component/component communication is done by background threads.

Software Platform Details

Component-based development

14

 Consequences
 Component is single-threaded

 No data is shared among components – everything is shared via messages

 Component internal (state) data does not have to be protected with locks

 Component developer does not have to (should not) write multi-threaded code

 Component scheduling discipline (including prioritization of operations)
can be controlled on a per-component basis

 Components are executed concurrently (on the same node) or in
parallel (on different nodes of the network)
 There is concurrency and parallelism among components but not within

components

 Where this approach does NOT work: I/O, asynchronous ops
 Asynchronous ops and I/O needs to ‘connect’ to the RIAPS component

execution model

 Solution: ‘Devices’ (instead of ‘components’) that can be multi-threaded
– but for expert developers only!

A ‘device component’ can encapsulate a complex, multithreaded application/system

Software Platform Details

Discovery service

15

 Discovery service: To help components find each other

 When a component provides a service it
registers that with the discovery service

 When a component requires a service it
looks it up via the discovery service

 Architecture:

 Each discovery service instance on the RIAPS

network participates in a peer-to-peer,

Distributed Hash Table (opendht)

 The DHT takes care of maintaining eventual

consistency across the nodes of the network

 Advantages:

 No centralized broker, changes eventually

propagate to all participants

 Robust to node and network failures

 Disadvantages:

 Content (i.e. registrations) need to be

periodically refreshed

Software Platform Details

Development languages

16

Language + -

Python Easy to learn and use

Powerful libraries

Interactive development tools

Performance penalty

Dynamic typing makes code susceptible

to latent flaws

C++ Performance Hard to learn to use it well

Code is more complex, hard to write

Cython Performance

Access to powerful libraries

More complex than Python

Requires learning – not widely used

Details:

- Core framework in Python

- Compiled C++ components are loaded into the Python framework

- Other languages can be used for implementing components (e.g. rust)

Recommendations:

1. Prototype algorithms and apps in Python, use fast libraries if needed (e.g. numpy)

2. If better performance is needed, port app to Cython (if learning curve is not an issue)

3. If very high performance is needed, port app to C++

Other implementation choice: Simulink/Stateflow

- Uses the Matlab-generated C code

Software Platform Details

Deployment process

17

 Assumptions:

 RIAPS nodes can join and leave the network at any time

 RIAPS nodes are managed from a central place (control room)

Software Platform Details

Deployment process

18

 Solution

 RIAPS Control (the deployment control
program running on the control node)
maintains a dynamic list of RIAPS nodes.

 It can also query and track the state of
individual nodes.

 When a RIAPS node joins the network, it
registers itself with RIAPS Control, when
the RIAPS node disconnects from the
network, it is automatically dep-registered
from the RIAPS Control

 RIAPS Control downloads apps to the
RIAPS nodes using secure FTP and
instructs the node’s deployment manager
to start the application

 Challenges:

 Fault management – detecting and
recovering from RIAPS node faults at any
time during this process

 Fine-grain management of the deployed
application - group control, visibility into
the status of the nodes and applications

Software Platform Details

Deployment process

18

 Solution

 RIAPS Control (the deployment control
program running on the control node)
maintains a dynamic list of RIAPS nodes.

 It can also query and track the state of
individual nodes.

 When a RIAPS node joins the network, it
registers itself with RIAPS Control, when
the RIAPS node disconnects from the
network, it is automatically dep-registered
from the RIAPS Control

 RIAPS Control downloads apps to the
RIAPS nodes using secure FTP and
instructs the node’s deployment manager
to start the application

 Challenges:

 Fault management – detecting and
recovering from RIAPS node faults at any
time during this process

 Fine-grain management of the deployed
application - group control, visibility into
the status of the nodes and applications

App model selected, 3 target

nodes connected

Software Platform Details

Deployment process

18

 Solution

 RIAPS Control (the deployment control
program running on the control node)
maintains a dynamic list of RIAPS nodes.

 It can also query and track the state of
individual nodes.

 When a RIAPS node joins the network, it
registers itself with RIAPS Control, when
the RIAPS node disconnects from the
network, it is automatically dep-registered
from the RIAPS Control

 RIAPS Control downloads apps to the
RIAPS nodes using secure FTP and
instructs the node’s deployment manager
to start the application

 Challenges:

 Fault management – detecting and
recovering from RIAPS node faults at any
time during this process

 Fine-grain management of the deployed
application - group control, visibility into
the status of the nodes and applications

App model selected, 3 target

nodes connected

App deployed, ready to launch

Software Platform Details

Deployment process

18

 Solution

 RIAPS Control (the deployment control
program running on the control node)
maintains a dynamic list of RIAPS nodes.

 It can also query and track the state of
individual nodes.

 When a RIAPS node joins the network, it
registers itself with RIAPS Control, when
the RIAPS node disconnects from the
network, it is automatically dep-registered
from the RIAPS Control

 RIAPS Control downloads apps to the
RIAPS nodes using secure FTP and
instructs the node’s deployment manager
to start the application

 Challenges:

 Fault management – detecting and
recovering from RIAPS node faults at any
time during this process

 Fine-grain management of the deployed
application - group control, visibility into
the status of the nodes and applications

App model selected, 3 target

nodes connected

App deployed, ready to launch

App running on 3 nodes

Software Platform Details

Deployment process

18

 Solution

 RIAPS Control (the deployment control
program running on the control node)
maintains a dynamic list of RIAPS nodes.

 It can also query and track the state of
individual nodes.

 When a RIAPS node joins the network, it
registers itself with RIAPS Control, when
the RIAPS node disconnects from the
network, it is automatically dep-registered
from the RIAPS Control

 RIAPS Control downloads apps to the
RIAPS nodes using secure FTP and
instructs the node’s deployment manager
to start the application

 Challenges:

 Fault management – detecting and
recovering from RIAPS node faults at any
time during this process

 Fine-grain management of the deployed
application - group control, visibility into
the status of the nodes and applications

App model selected, 3 target

nodes connected

App deployed, ready to launch

App running on 3 nodes

Software Platform Details

Deployment process

18

 Solution

 RIAPS Control (the deployment control
program running on the control node)
maintains a dynamic list of RIAPS nodes.

 It can also query and track the state of
individual nodes.

 When a RIAPS node joins the network, it
registers itself with RIAPS Control, when
the RIAPS node disconnects from the
network, it is automatically dep-registered
from the RIAPS Control

 RIAPS Control downloads apps to the
RIAPS nodes using secure FTP and
instructs the node’s deployment manager
to start the application

 Challenges:

 Fault management – detecting and
recovering from RIAPS node faults at any
time during this process

 Fine-grain management of the deployed
application - group control, visibility into
the status of the nodes and applications

App model selected, 3 target

nodes connected

App deployed, ready to launch

App running on 3 nodes

App halted

Software Platform Details

Component-based development

19

 Example app:

 Components: Sensor, Local Estimator, Global

Estimator
 Each runs in its own thread

 Interact via messages only

 Actors: Local Actor and Aggregator Actor
 Local Actors are deployed on multiple nodes

 Aggregator actor is deployed on a single node

 Concurrency:

 Sensor and Local Estimator run in separate
threads but concurrently (possibly on
different cores) - pipelining

 Local Aggregator Actors and run on
different nodes, in parallel

 Aggregator Actor (and its Global Estimator
component) runs on a separate node, in
parallel with everything else

Software Platform Details

Models and code in applications - Example

20

Software Platform Details

Models and code in applications

21

 Application Model specifies:
 Message types (with data fields)

 Component types (with ports)
 Each ‘input’ port requires an associated message handler – i.e. the component operation

 Publish/subscribe ports have single message types

 Request/reply and client/server ports have pairs of message types (for request -> reply types)

 Actors (with components)
 List components

 Message flows between components and actors are inferred from the message types
 Connections are automatically established ate deployment time

 Components and actors can have parameters
 Formal and actual, incl. default values

 Generated from the model:
 Python/C++ code skeleton for component(s) + JSON file to configure run-time system

 Application code (by developer):
 C++: Extend skeleton code with ‘business logic’ for the code

 Python: Implement the component class and its operation

 Deployment Model: Specifies how to deploy actors on the RIAPS nodes
 On all / selected nodes, with concrete parameter values

Software Platform

22

 Basic capability:

 Software component framework for distributed apps

 Core platform services: deployment, discovery, devices

 Domain-specific language for system modeling ; generators

 Example distributed app: microgrid control

 Enhanced capability:

 Distributed coordination

 Time-sensitive messaging

 Resource management

 Fault management

 Example distributed app: transactive energy

Distributed coordination services

 Motivation:
 Need for precisely defined and verified services to support apps

consisting of activities interacting via a network

 Group membership:
 An app component can dynamically create/join/leave a

group of entities of the same app. It can also send/receive

messages within the group, and be informed about

changes in the group membership

 Leader election:
 A group can have a leader: an ‘elected’ component that

makes global decisions. Leaders are elected through an

automated process, and communication to/from the

leader is possible.

 Consensus:
 Group members can get participate in a consensus process

that reaches agreement over a value via a special protocol.

 Time-coordinated control action:
 Group members can use a combination of the above

three features to agree on a control action that is

executed at a scheduled point in time in the future

Distributed coordination services

 Test example – Synchronized action

 3 nodes form a group – Group formation

 Group elects a ‘leader’ node – Leader election

 Every 5 second nodes propose a future time value for control action that the

group votes on – Consensus

 Agreed-upon time value is used to schedule a control action in the future that is

executed on all nodes when the time arrives – Time-coordinated control action

Accuracy of time-coordination is better than 5

microseconds (given the time-synchronization)

Time synchronization:

• Master clock GPS (fallback NTP)

• Clock distribution: IEEE 1588

• Node clock deviation < 10 usec (on LAN)

Time-Sensitive Messaging

25

// Sensor component

component Sensor {

…

pub ready : SensorReady timed; // Publisher of SensorReady messages

rep request : (SensorQuery , SensorValue) timed; // To query the sensor

}

// Filter component

component Filter () {

sub ready : SensorReady timed ; // Subscriber of SensorReady messages

req query : (SensorQuery , SensorValue) timed ; // To issue queries for the

sensor

…

}

Modeling language extension:

Sender

Sender

Port
Message

Timestamp

Receiver

Receiver

Port
Message

Timestamp

Sender-side:

• Timestamping is automatic

Receiver-side:

• get_sendtime(): when message

was sent

• get_recvtime(): when message

was received

Motivation: app needs to

know how long it took to

transfer a message in the

network.

Resource management - Approach

 Resource: memory, CPU cycles, file space, network bandwidth, (access to)
I/O devices

 Goal: to protect the ‘system’ from the over-utilization of resources by faulty
(or malevolent) applications

 Use case:

 Runaway, less important application monopolizes the CPU and prevents critical
applications from doing their work

 Solution: model-based quota system, enforced by framework

 Quota for application file space, CPU, network, and memory + access rights to
I/O devices + response to quota violation – captured in the application model.

 Run-time framework sets and enforces the quotas (relying on Linux capabilities)

 When quota violation is detected, application actor can (1) ignore it, (2) restart,
(3) react to by freeing resources.

 Detection happens on the level of actors

 App developer can provide a ‘quota violation handler’

 If actor ignores violation, it will be eventually terminated

Resource Management Implementation

27

Detection Enforcement Mitigation

CPU Utilization Soft limit cgroups cgroups automatically adjusts priority of actor

as needed

Automatic

Hard

limit

Process monitor Monitor signals process App-provided handler

Memory footprint Soft limit Process monitor Monitor signals process App-provided handler

Disk space Hard

limit

Quota system for

files

Quota system for files; monitor signals process App-provided handler

Network

utilization

Hard

limit

Network ‘tc’ ‘tc’ caps the network bandwidth a process can

use; monitor signals process

App-provided handler

Operation

deadlines

Soft limit Track time spent in

op

Monitor signals process App-provided handler

Unexpected

termination of

operation

N/A Exception handler Exception handler signals component App-provided handler

Notes:

• ‘cgroups’ (for ‘control groups’) is an advanced Linux feature that is widely used to control resource usage of programs (CPU,

memory, network, etc.)

• ‘tc’ (for ‘traffic cop’) is an advanced Linux feature to control the network packet handling in the OS. One can limit the rate

(number of bytes sent over a time interval) and ‘tc’ will delay or drop packets of the limit is exceeded.

Fault Management
 Assumption

 Faults can happen anywhere: application,
software framework, hardware, network

 Goal
 RIAPS developers shall be able to develop

apps that can recover from faults anywhere
in the system.

 Use case
 An application component hosted on a

remote host stops permanently, the rest of
the application detects this and ‘fails over’ to
another, healthy component instead.

 Philosophy:
 The platform provides the mechanics, but

app-specific behavior must be supplied by
the app.

Fault management

Principles:

 Application actor termination will be detected by the deployment
manager, and the actor will be restarted per the application model

 Application resource violation and operation deadline violation will
be logged, and application notified

 RIAPS services will be automatically restarted if they crash

 The RIAPS node’s core operating system will be configured in an
automatic restart mode

 Network connection health will monitored via heartbeat messages
and application notified

 Failed application deployment will be detected at the control node

 Loss of connectivity to the control node will detected, logged, and
re-establishment of connection attempted

System-level Fault Management

Implementation

30

Fault

location

Error Detection Recovery Mitigation

App flaw actor termination deplo detects

via netlink socket

(warm) restart actor call term handler; notify peers

unhandled exception framework catches all

exceptions if repeated, (warm) restart

call component fault handler;

notify peers about restart

resource violation framework detects

if restarted

call app resource handler

notify peers

- CPU utilization soft: cgroups cpu tune scheduler

hard: process monitor if repeated, restart notify actor/ call handler

- Memory

utilization

soft: cgroups memory (low) notify actor/ call handler

hard: cgroups memory

(critical)

terminate, restart call termination handler

- Space utilization soft: notification via netlink notify actor/ call handler

hard: notification via netlink terminate, restart call termination handler

- Network

utilization

via packet stats

if repeated, (warm) restart

notify actor/ call handler

notify peers about restart

- Deadline

violation

timed method calls if repeated, restart notify component / call handler

app freeze check for thread stopped terminate, restart actor notify component;

call cleanup handler; notify peers

restart

app runaway check for method non-

terminating

terminate, restart actor notify component;

call cleanup handler; notify peers

about restart

System-level Fault Management

Implementation

31

Fault location Error Detection Recovery Mitigation

RIAPS flaw internal actor exception framework catches all

exception

terminate with error; warm

restart

call term handler;

disco stop / exception deplo detects deplo (warm) restarts disco if services OK, upon restart

restore local service

registrations

deplo stop systemd detects restart deplo (cold) restart disco ; restart

local apps

deplo loses ctrl contact deplo detects NIC down -> wait for NIC

up; keep trying

System (OS) service stop systemd detects systemd restarts clean (cold) state

kernel panic kernel watchdog reboot/restart deplo restarts last active

actors

External I/O I/O freeze device actor detects reset/start HW; device -

specific

inform client component

I/O fault device actor detects reset/start HW; device -

specific

log, inform client component

HW CPU HW fault OS crash reset/reboot systemd deplo

Mem fault OS crash reboot systemd deplo

SSD fault filesystem error reboot/fsck systemd deplo

Network NIC disconnect NIC down notify actors/call handler

RIAPS disconnect framework detects

RIAPS p2p loss

keep trying to reconnect notify actors/call handler ; recv

ops should err with timeout,

to be handled by app

DDoS deplo monitors p2p

network performance

notify actors/call handler

Some implementation details

for fault management

32

 Application restart:

 When application actors are started, they are registered in a fault-tolerant local

database. Upon crash of the actor, RIAPS services, and the RIAPS node itself, the

deployment automatically manager restarts all application actors that were

running previously (i.e. they are in the database).

 Detection of loss of network connectivity:

 The Network Interface Card (NIC) is continuously monitored -- if the ‘carrier’ is

lost and/or restored, the running applications are informed.

 Handling remote application crashes:

 When a RIAPS node starts, its deployment manager attempts to join a peer-to-

peer network of RIAPS nodes.

 When an application is deployed and an application actor starts, its peers within

the RIAPS network will be informed.

 If an application actor has crashed and/or restarted, its peer application actors

are informed about the loss and reappearance of the actor.

 The above mechanism allows implementing apps that are aware of status changes

of their actors

Software Platform

Basic Security: Threat model

Type of threat Possible harm Protection is needed for

Malicious network devices Observe, possibly modify or

disrupt network traffic

Availability of resources;

confidentiality and integrity of

communications

Malicious applications Interfere with operations,

exhaust resources, or physically

damage the node or the

connected power system

Confidentiality and integrity of

communications, availability of

and control over physical

resources

Distributed Denial of

Service (DDoS) attack

Core applications of the

platform are unable to operate

Platform services and remotely

deployed and controlled

applications

Malicious application

actors

Unauthorized access to

configuration and operational

data of another application

Confidentiality of data

Software Platform

Basic Security: Design

Secure deployment:

- All RIAPS nodes on the network

can be accessed only through

secure communication links:

encryption + authentication via

asymmetric (public/private key)

cryptography. Each node has a

unique, hardware-encapsulated

key

- Software apps are

cryptographically signed and

locally validated by the node

- Each node has a unique

hardware-protected security key

Secure communications:

- RIAPS nodes use secure, encrypted communications (SSL)

- Each app has a dynamically generated secure key for encrypting

communications

- RIAPS-internal message traffic is similarly encrypted

Software Platform

Basic Security: Design

Secure

deployment

Secure

communications

Confidentiality
SSL: Encrypted,

secure

communications

between control

room and nodes

Cryptographically

signed apps

SSL: Encrypted, secure

communications between

control room and RIAPS

nodes

Each app has a generated

crypto key for encrypting

all communications

Integrity

Authenticity

Availability

Detection of

network

impairments

Multiple network

links (fallback)

Informing apps about

impairment

Autonomous operation

of nodes and apps is

expected

How are security concerns addressed?

Management:
• Node-local security manager to keep and manage security keys

• Deployment manager cryptographically validates apps during deployment,

assigns keys to app actors

• Discovery service uses system-specific keys for inter-node communications)

Software Platform

Advanced Security: Design

 Advanced app-level security

 Isolation: Apps are to be isolated from each other using standard
Linux access control facilities: a unique, new user id is generated at
deployment time and the app runs under this id – with restricted
privileges.

 Access control: Uses AppArmor – a lightweight Mandatory Access
Control (MAC) service in Linux that provides resource protection
including: file access (read, write, link, lock), library loading, execution
of applications, coarse-grained network (protocol, type, domain),
Linux capabilities, coarse owner checks (task must have the same
euid/fsuid as the object being checked), file system mounting, named
sockets, abstract and anonymous sockets, DBus API (path, interface,
method), signals, ptrace services. Configuration of these protections
will be done using the application model.

 Security configuration will be enforced by the deployment manager when
the application is deployed and launched.

Software Platform

Advanced Security: Implementation

Secure information flow

enforcement:

 Messages: All actor-actor

communication is encrypted using

ZeroMQ’s Elliptic Curve (EC)

encryption mechanism that uses

dynamically generated security keys.

 Files (and other resources):

Applications are ‘firewalled’ from each

other using Linux’s AppArmor Security

Module. The riaps_actor instances are

not permitted to access any files except

the ones in their home and in the /tmp

folder.

Software Platform

Advanced Security: Implementation

 Support for Advanced Capability: supporting security features for application.

app DistributedEstimator {

host 192.168.57.1 {

network any; // Actors on this host may connect to any Internet node

}

host all {

network dns; // all hosts may connect to the domain name service

}

host 192.168.57.3 {

network 192.168.1.1; // … may connect to 192.168.1.1

}

on all Estimator; // Estimator actor deployed on all nodes

on (192.168.57.1) Aggregator(posArg=123); // Aggregator on

// 192.168.57.1 only

}

Deployment model constrains what network resources an app actor

can access.

These rules are strictly enforced by the Linux firewall system.

Support for engineering, commissioning, and

maintenance of applications

 Envisioned app development process
 Developers use a state-of-the-art IDE for

development

 The development process is model-driven – code
skeletons and configuration artifacts are
automatically generated from models

 See RIAPS DSML for applications and deployment

 Developers use a source code management
system:

 All files are version controlled, all versions are
preserved

 SCM allows ‘tagging’ the file versions such that a
unique configuration can always be retrieved from
the database

 Current RIAPS IDE and tooling
 Eclipse IDE with RIAPS plugin (DSML generator)

 git version control system

 Examples hosted on https://github.com/RIAPS

https://github.com/RIAPS

Support for engineering, commissioning, and

maintenance of applications

 Solution
 When application is deployed, the SCM is

tagged with a dynamically generated ‘tag’
- a special code that identifies a specific
state of the source code base, i.e. the
versions that were used in the
deployment (*)

 The application files are packed into a
compressed package that includes
metadata: the code base tag, and other
information about the deployment (*)

 The package is cryptographically signed
and encrypted(*)

 The package is transferred to the target
nodes

 The received package is validated,
decompressed, metadata is stored (*)

 The application is started, operated etc.

Why?

Application code actually

deployed can be traced back

to the source code in the

SCM

Metadata shows the

provenance of the code

Encryption protects from

tampering with the code

If validation fails, package was

modified

RIAPS Data Models

41

RIAPS and Data (1)

42

 RIAPS is not a ‘program’ (a software application), rather a complete software
platform to build applications

 RIAPS has many internal data models, not exposed to the applications

 Architecture Modeling Language

 Describes the components and the ‘wiring’ of a distributed app

 https://github.com/RIAPS/riaps-pycom/blob/develop/src/riaps/lang/riaps.tx

 Textual syntax, parsed and converted into JSON

 Deployment Modeling Language

 Describes the deployment aspects: hosts (with firewall permissions) and actor/process deployment
on a network

 https://github.com/RIAPS/riaps-pycom/blob/develop/src/riaps/lang/depl.tx

 Textual syntax, parsed and converted into JSON

 Deployment manager/Actor messages

 For all interactions between the ‘deplo’ and app ‘actors’

 https://github.com/RIAPS/riaps-pycom/blob/develop/src/riaps/proto/deplo.capnp

 Defined in capnproto IDL, compiled into marshaling code for C++/used in Python

 Discovery service/Actor messages

 For all interactions between the ‘disco’ and app ‘actors’

 https://github.com/RIAPS/riaps-pycom/blob/develop/src/riaps/proto/disco.capnp

 Defined in capnproto IDL, compiled into marshaling code for C++/used in Python

https://github.com/RIAPS/riaps-pycom/blob/develop/src/riaps/lang/riaps.tx
https://github.com/RIAPS/riaps-pycom/blob/develop/src/riaps/lang/depl.tx
https://github.com/RIAPS/riaps-pycom/blob/develop/src/riaps/proto/deplo.capnp
https://github.com/RIAPS/riaps-pycom/blob/develop/src/riaps/proto/disco.capnp

RIAPS and Data (2)

43

 RIAPS internal data models, not exposed to the applications

 App-internal messages

 ZMQ wrapper over raw bytes of app payload (with opt. timestamp)

 ZMQ wrapper dynamic group/coordination messages (RAFT, etc.)

 App deployment package

 .tgz file, cryptographically signed/encrypted

 Content:

 Component code (.so or .py), support libraries, data files

 App architecture model and deployment model (in .JSON)

 Firewall configuration, source traceability information

 EC security keys to encrypt in-app network comms

 Deployment manager package

 Public/private keys for protecting ‘ctrl’/’deplo’ comms

 EC security keys to encrypt in-deplo network comms

 Cert for authenticating logins to ‘ctrl’

RIAPS and Data (3)

44

 RIAPS apps define their own data model

 App message data models:

 Python: any object (c-pickled)

 Sender and receiver must agree on data model

 C++ and Python: Defined in capnproto IDL

 IDL is translated into C++ classes and marshaling/unmarshaling code

 IDL can be directly loaded into Python (the component) and used via a dynamically
instantiated API

 RIAPS apps can use a configurable logger
 Based on spdlog, usable from Python or C++

 Log format is customizable by the app developer

 RIAPS apps can connect to external services

 Typical approach: RIAPS device component to manage interactions

 Examples: C37.117, Modbus, ChargePoint (OCPP),

 Same applies to any other network-accessible resource (e.g. Influxdb)

Summary

45

Summary

 RIAPS is a platform for building distributed apps for Smart Grids

 It has been demonstrated with

 Microgrid control app

 Islanding/reconnection, distributed control

 Remedial action scheme app

 Generation curtailment and under-frequency load-shedding

 Transactive energy app

 Prosumer ‘traders’ buy and sell energy, use a blockchain to record trades

 Priority-based load shedding

 Loads controlled by their own RIAPS nodes that receive ‘grid load’ information and
disconnect/reconnect their nodes according to a pre-defined priority scheme

https://riaps.isis.vanderbilt.edu/

https://riaps.github.io/

https://github.com/RIAPS

https://www.youtube.com/channel/UCwfT8KeF-8M7GKhHS0muawg

RIAPS was made possible by support from the US DOE ARPA-E

https://riaps.isis.vanderbilt.edu/
https://riaps.github.io/
https://github.com/RIAPS
https://www.youtube.com/channel/UCwfT8KeF-8M7GKhHS0muawg

