

Virtualization for Real-time Power Grid Substation Automation

About Seapath

SEAPATH is the result of a collaboration between 2 major european electricity players and Open source expertise.

Context

Energy Transition drives change in power transmission and distribution grids

- Distributed renewable energy sources
- Demand response
- Electric mobility
- Smart services to the grids from a growing number of third-parties

Need to swiftly adapt grid control architectures

- Multiplication of distributed controls
- More dynamic and adaptive automation functions
- Increased data management needs

From where we start (digital substation)

Virtualization for new grid control architecture

The goal of Seapath

Develop

a reference design and industrial grade open source real-time platform

Host

virtualized **automation and protection**applications

Share

a platform between **multi- provider applications**(hardware agnostic)

Combine

performance and
 safety

Technical requirements

Existing solutions

Off-the-shelf solutions providing either

- HA & Virtualization platform
- Real-time platform
- Low-latency platform

But not a mix of that!

- Minimal firmware
- Highly configurable

The Yocto Project

Collaborative Linux Foundation project.

Allows to:

Create custom Linux based systems from source code

Be agnostic of the hardware architecture

Aggregate tons
of Open Source
components (including
Virtualization and HA)

Configure, modify each component

Check / patch
Common
Vulnerabilities and
Exposures (CVE)

Technical architecture and stack

CLOUD

HARDWARE

FIRMWARE

Continuous Integration

• To speed-up adopting new technologies in a critical infrastructure environment that is growing in complexity, a shift-left is needed.

• Using containerization and virtualization, combined with infrastructure-as-code enabling technologies (such as ansible) will allow automated DTAP environments.

• Early testing (fail early) in such an environment will help to create a streamlined development process.

• Such technology will limit start-up cost for new innovations, and open up the industry to newcomers.

SEAPATH CI building blocks

1

SEAPATH recipes (including docker and Virtual Machine) in github

2

Automated image build process including unit tests provided by the Yocto project

3

Automatic build pipeline and orgistration by Jenkins

4

Automated deployment and configuration by Ansible

5

Platform integrity tests using Cukinia

6

Integration testing of typical substation applications

7

Real-time test bench for evaluation of real-time requirements

... (interoperability testing, Site Acceptance Test, ...)

Proof of Concept

Latency checking (cyclic test): Host

Configuration:

Operating system:

Image based on yocto including KVM, Pacemaker Corosync and Ceph, Kubernetes, OvS-DPDK, Docker. **Kernel:** 4.19 (preempt-rt and non preempt-rt)

Hardware:

CPU: 14 Core E5-2680V4 **Memory:** 32GB DDR4

Circuit Board: ASMB-8231-00A1E

Preempt-rt

non Preempt-rt

Latency checking (cyclic test): Guest

Configuration:

Host Operating system:

Host: see previous slide **Kernel:** 4.19 preempt-rt

Guest:

Same as host without kvm, Ovs-DPDK

Kernel: 4.19 preempt-rt

Real-time testing SEAPATH

It will allow anyone to:

Ensure a specific set-up has the real-time characteristics suitable for its critical application in the substation.

Benchmark different hardware platforms to see if it can meet all the required performance criteria.

Understand the scale-ability potential of different setups.

Validate the real-time performance-impact of any configuration, or changes made during development and operations.

Real-time testbench

Required hardware

Measurement hardware:
PC with 2 NIC's, 1 DPDK
supported network card

Required software

MoonGen

https://github.com/emmericp/MoonGen

TestBench

https://github.com/robidev/moongen-rfc2544

Test applications

https://github.com/seapath/meta-seapath-tools

Output

Report of performance measurements, "inspired" by RFC2544

Example test report

RFC 2544 Test Report

1 General Test Information

Device Under Test: KERNEL Operating System: votp

Date: 2021-03-22

2 Throughput

Test Duration: 1 s

 $\begin{array}{ll} \text{Maximal Loss Rate:} & 10.000 \ \% \\ \text{Accuracy:} & 100 \ \text{Mbps} \end{array}$

Frame Size	Ttomation	Total Tx	Total Rx	Throughput	Throughput
(bytes)	Iteration	Frames	Frames	(Mpps)	(Mbps)
64	1	363384	363384	0.363	244.194
128	1	444150	444150	0.444	525.874
256	1	435393	435393	0.435	961.348
512	1	233226	231432	0.233	992.610

3 Latency

Test Duration: 1 s

Frame Size (bytes)	Throughput (Mpps)	Latency Min (μs)	Latency Avg (μs)	Latency Max (μs)	
64	0.360	11712.0	193497.4	1314224.0	10
128	0.440	31984.0	199184.2	1123120.0	15 10 0 200 400 600 800 1,000 1,200 latency [μs]
256	0.433	35024.0	187931.2	1009152.0	15 Atilique of the first of th
512	0.233	25160.0	194260.6	978208.0	10 10 10 10 10 10 10 10 10 10 10 10 10 1

Call to Arms

Desired contributions:

- We need end user feedback!
- End user applications
- Feedback regarding the platform's features (do we miss any?)
- Test bench validation, and checks for completeness

https://github.com/seapath/

Thank you for your attention

https://github.com/seapath/

