Grid Architecture from the Customer Perspective

Bruce Nordman

Lawrence Berkeley National Laboratory bnordman@lbl.gov nordman.lbl.gov

What you see Depends on Where you sit

Questions I have for FAWG

- What building/grid coordination mechanisms does LFE anticipate and/or support?
- How is time-varying pricing supported?

Background

LBNL - Lawrence Berkeley National Laboratory

- Operated by University of California for US Dept. of Energy
- Near San Francisco
- Large focus on energy use/efficiency in buildings and related topics
- Work on demand flexibility began ~20 years ago

Bruce

- Grew up in Silicon Valley
- Focus on energy/electronics since mid-90s; energy/networks early 2000s
- Technology standards a critical way for public sector to influence products
- Communication: Device-Device; Device-Grid; Device-Human

Building / Grid Coordination has 3 dimensions

Energy

- Shifting/shedding load ('taking')
- What is assessed at the meter

Power

- Mostly what inverters do
- Reactive power, power quality, ...
- 4-second regulation signal

Capacity

- Most critical hyper-locally
- Negotiate power limits
- EVs making this critical

Buildings (Customers) are their own domain

- For buildings, grid should be a 'black box'
- For grid, buildings should be a 'black box'
- Interface between the two should be as simple as possible
 - And no simpler

Local tech needs to be universal

Building

Building

Building/Grid Interface

Wide area tech can vary over space and time

Energy Access context indicates need for alternatives

Image from Eric Brewer talk

January 14, 2010 (LoCal Retreat)

Power Distribution – 139 ... 90 years later*

End Use

Distribution

Thomas Edison

- Wires
- Fuses Circuit
 Breakers
- Junction boxes

*1882: Utility grid 1931: Edison dies

"Unitary Grid" - single 'pool' of power

Similar histories - Phone system and Utility grid

- invented about same time (circa 1880)
- Synchronous highly coupled
- Unitary to end points centrally managed
- Organizations conservative regulated
- Technology advances slowly
- Local variations in technology - minor
- One mode of operation

Old phone system	Internet
Utility grid	Network model of power
19 th century	20 th /21 st century
Centralized	Distributed
Analog	Digital
No storage	Storage widespread
Tightly coupled	Loosely coupled
Entangled technology	Isolated technologies
Custom / Expensive	Commodity / Cheap
••••	į

Power & information distribution

"Technology / infrastructure that moves data / electrons from devices where they are <u>available</u> to devices where they are <u>wanted</u>"

All bits/packets different; all electrons same

- Need a fundamental mechanism for a network model
- Communications: understand system topology (addressing)
 and move data accordingly => Internet Protocol
 - Data routing is how bits know where to go
- Power: balance supply and demand => Price
 - Price is how electrons know where to go
 - Routing power makes no sense

Location, quantity, timing

Networked Electricity - "Local Power Distribution"

- nG controller functions like an Ethernet switch or Wi-Fi access point
- Each nG has elec.
 storage and its own
 "local price"
- Power only flows toward higher prices
- All communications over single link

All power distribution digitally managed

Grid vs. Building

- Grid devices provide no direct benefit to people
- Building devices all* provide benefit to people
- Two tech domains in buildings
 - Power Distribution
 - Functional Control

What system architecture innovations are needed for pervasively networked buildings?

Network Power Integration

Infrastructure Devices

- Addition adds some complexity ...
- ... but avoids much more

Buildings (Customers) are their own domain

- For buildings, grid should be a 'black box'
- For grid, buildings should be a 'black box'
- Interface between the two should be as simple as possible
 - And no simpler
 - o For energy, just price and quantity

LFE should address all three domains

Wide area tech can vary over space and time

Retail and Wholesale are different

- Intra-grid are wholesale
- Grid/customer are retail.
- Intra-customer are local
- That efforts are made to put retail into wholesale indicates that retail is broken

"Coordination Architectures"

- Unstated assumptions about how grid could and should work
- "Who talks to Whom about What"
- Direct Load Control
- Event-based Demand Response
- Price-based Demand Response (One-way Transactive)
- Two-way Transactive Energy (bidding, auctions, ...)
- ...

Design Principles / Assumptions (subset)

- **Simple**r is better
- Universal solutions are ideal
- Learn appropriate lessons from the success of Internet technology
- Storage changes everything
- Pricing covers all DER, all of the time, for all customers
- Retail and wholesale entities never overlap
- 5-minute pricing, with a 24 hour forecast, a likely endpoint
- Price forecasts are not guaranteed
- Third parties can offer flat rates or guarantees utilities don't need to
- Coordination with utility grid should enable microgrid operation
- The time for "incremental additionality" is over

"Price-Based Grid Coordination" (PBGC)

- Data flow to DER / customers is one-way
 - Return is measurements from feeders, substations, ...
- Allows innovation in how to determine prices and how DER use them
- Enables multiple locations of translating prices to functional controls
- Building 'gateway' not required

Price Streaming Data Model

Static Elements

- RetailerLong, RetailerShort
- RateNameLong, RateNameShort
- Country
- State
- Currency*
- DateAnnounced
- DateEffective
- URL
- BindingPrices
- LocalPrice

Dynamic Elements

- CurrentTime
- OffsetToFirstPrice
- IntervalCount

For each Interval

- TimeStamp
- Price
- ExportPrice

Each element has definition and standard encoding

*GHG Emissions a "Currency"

Recommendations for LFE Architecture

- Adopt diagram below
 - Describe "Energy Services Interface"
 - Adopt "Local Price" concept
- Fully implement dynamic pricing before considering alternatives

Thank you

