Power Grid Model

A High-Performance Distribution Grid Calculation Library
Summary

• Power Grid Model: an open-source project for distribution power system calculation.
 - https://github.com/alliander-opensource/power-grid-model

• In this presentation
 - Why a new project?
 - What is Power Grid Model?
 - How does it perform?
 - Deployment inside Alliander
 - Road to open-source
Who are we? Who am I?

Yu (Tony) Xiang, PhD
Lead Scientific Engineer
Chapter Advanced Analytics
@Alliander
Guest Lecturer
@Eindhoven University of Technology

Peter Salemmink, MSc
Data Scientist
Chapter Advanced Analytics
@Alliander
Traditional workflow for power system analysis

Modern workflow for power system analysis

Publish results

Database

Programming/scripting

Cloud deployment

input_data = import_data()
model = Model(input_data)
result = model.calculate()
What makes a good power system calculation model/library?
Why a new library?

<table>
<thead>
<tr>
<th>Feature</th>
<th>Commercial software</th>
<th>Existing open-source solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power system calculation functionalities</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Asymmetric calculation support</td>
<td>Good</td>
<td>Mediocre</td>
</tr>
<tr>
<td>Easy to use and well documented software API</td>
<td>Mediocre</td>
<td>Good</td>
</tr>
<tr>
<td>Performant on large dataset and/or batch calculation</td>
<td>Depends?</td>
<td>Mediocre</td>
</tr>
<tr>
<td>Efficient parallelization</td>
<td>Depends?</td>
<td>Mediocre</td>
</tr>
<tr>
<td>Cross-platform and scalable in cloud</td>
<td>Mediocre</td>
<td>Good</td>
</tr>
</tbody>
</table>

07-02-2023
Alliander in-house library: Power Grid Model

• Power System Calculation Functionalities
• Symmetric and asymmetric calculation
• Power flow
 • Newton-Raphson
 • Iterative current (equivalent to backwards/forwards for radial network)
 • Linear current (approximation)
 • Linear impedance (approximation)
• State estimation
 • Iterative linear method
Alliander in-house library: Power Grid Model

- Efficient implementation in C++
 - Native shared-memory multi-threading for parallelization in batch calculations
- API in Python
 - Stable and easy-to-use
 - Well-documented
- Cross-platform
 - Publish binary Python packages in official PyPI
 - https://pypi.org/project/power-grid-model/
 - Built for Windows (x64), Linux (x64/arm64), macOS (x64/arm64)
Model Validation

- Validation of the library against reference models with 80+ test cases
 - Hand calculation
 - Vision
 - Gaia
 - PowerFactory
 - PandaPower
- Continuous validation as part of CI pipeline in GitHub Actions
Performance Benchmark

- Compare performance of Power Grid Model and PandaPower
 - https://github.com/alliander-opensource/power-grid-model-benchmark
- 1000 nodes radial network
- Time-series symmetric and asymmetric power flow calculation in 1000 steps
- Testing environment: Intel i7-8850H, 40 GB RAM, single-thread in Linux (WSL)
- Library version: power-grid-model 1.4.0, pandapower 2.10.1
Performance Benchmark

Relative performance for symmetric calculation

- PandaPower Newton-Raphson: 1
- PGM Newton-Raphson: 25
- PGM Iterative Current: 45
- PGM Linear Impedance: 68
- PGM Linear Current: 69
Performance Benchmark

Relative performance for asymmetric calculation

- **PandaPower Newton-Raphson**: 1
- **PGM Newton-Raphson**: 69
- **PGM Iterative Current**: 247
- **PGM Linear Impedance**: 242
- **PGM Linear Current**: 486

07-02-2023
Current Deployment

- Data conversions
 - CIM
 - Vision
 - GridCal
 - Gaia (pending)
 - PandaPower (pending)
Current Deployment
A fundamental building block for Alliander

- Deployed in 10+ applications inside Alliander

- Grid planning
- Automatic network design
- Monitoring asset allocation
- Active congestion management
- …?
Road to Open Source

• Power Grid Model is an open-source project
 - https://github.com/alliander-opensource/power-grid-model

• Ways of collaboration and contribution
 - Use the library, give feedback, report bugs
 - Provide validation test cases
 - Improve Python API
 - Improve C++ core (new algorithms and models)

Road to Open Source

- Current active partners
How to get started?

1. Check out Alliander Open Source website

2. Visit Power Grid Model Github community
 https://github.com/alliander-opensource/power-grid-model

3. Mail the team: dynamic.grid.calculation@alliander.com

4. Tutorial workshop
 https://github.com/alliander-opensource/power-grid-model-workshop

Power Grid Model TSC & maintainers

- Tony Xiang (Chair)
- Werner van Westering
- Peter Salemink
- Bram Stoeller
- Nitish Bharambe
- Jonas van den Bogaard

07-02-2023