



# Summary



- Power Grid Model: an open-source project for distribution power system calculation.
  - <a href="https://github.com/alliander-opensource/power-grid-model">https://github.com/alliander-opensource/power-grid-model</a>
- In this presentation
  - Why a new project?
  - What is Power Grid Model?
  - How does it perform?
  - Deployment inside Alliander
  - Road to open-source

#### Who are we? Who am I?





Yu (Tony) Xiang, PhD

Lead Scientific Engineer Chapter Advanced Analytics @Alliander

**Guest Lecturer** @Eindhoven University of Technology



Peter Salemmink, MSc

Data Scientist Chapter Advanced Analytics @Alliander



Electricity grid length

92,000 km

91,000 km in 2019

Gas grid length

42,000 km

42,000 km in 2019

Number of customer connections

5.8 million

5.8 million in 2019

Number of employees

5.881 FTES

5,703 FTEs in 2019





Electricity and gas

## Traditional workflow for power system analysis





# Modern workflow for power system analysis





## Modern workflow for power system analysis





# Why a new library?



Power system calculation functionalities

Asymmetric calculation support

Easy to use and well documented software API

Performant on large dataset and/or batch calculation

Efficient parallelization

Cross-platform and scalable in cloud

Commercial software

Good

Good

Mediocre

Depends?

Depends?

Mediocre

Existing opensource solution

Good

Mediocre

Good

Mediocre

Mediocre

Good

## Alliander in-house library: Power Grid Model



- Power System Calculation Functionalities
- Symmetric and asymmetric calculation
- Power flow
  - Newton-Raphson
  - Iterative current (equivalent to backwards/forwards for radial network)
  - Linear current (approximation)
  - Linear impedance (approximation)
- State estimation
  - Iterative linear method

## Alliander in-house library: Power Grid Model



- Efficient implementation in C++
  - Native shared-memory multi-threading for parallelization in batch calculations
- API in Python
  - Stable and easy-to-use
  - Well-documented
- Cross-platform
  - Publish binary Python packages in official PyPI
  - https://pypi.org/project/power-grid-model/
  - Built for Windows (x64), Linux (x64/arm64), macOS (x64/arm64)

#### Model Validation



- Validation of the library against reference models with 80+ test cases
  - Hand calculation
  - Vision
  - Gaia
  - PowerFactory
  - PandaPower
- Continuous validation as part of CI pipeline in GitHub Actions

#### Performance Benchmark



- Compare performance of Power Grid Model and PandaPower
  - https://github.com/alliander-opensource/power-grid-model-benchmark
  - 1000 nodes radial network
  - Time-series symmetric and asymmetric power flow calculation in 1000 steps
  - Testing environment: Intel i7-8850H, 40 GB RAM, single-thread in Linux (WSL)
  - Library version: power-grid-model 1.4.0, pandapower 2.10.1

#### Performance Benchmark



#### Relative performance for symmetric calculation



#### Performance Benchmark



#### Relative performance for asymmetric calculation



# Current Deployment



- Data conversions
  - CIM
  - Vision
  - GridCal
  - Gaia (pending)
  - PandaPower (pending)

# Current Deployment A fundamental building block for Alliander



Deployed in 10+ applications inside Alliander



15 07-02-2023

# Road to Open Source



- Power Grid Model is an open-source project
  - https://github.com/alliander-opensource/power-grid-model
- Ways of collaboration and contribution



# Road to Open Source



Current active partners

















# How to get started?



Power Grid Model TSC & maintainers







Visit Power Grid Model Github community

https://github.com/alliander-opensource/power-grid-model



Mail the team: dynamic.grid.calculation@alliander.com



Tutorial workshop

https://github.com/alliander-opensource/power-grid-model-workshop



Tony Xiang (Chair) Werner van Westering



Peter Salemink



Bram Stoeller



Nitish Bharambe



Jonas van den Bogaard