ILFENERGY

TAC Meeting 17 January 2023

Antitrust Policy Notice

Linux Foundation meetings involve participation by industry competitors, and it is the intention of the Linux Foundation to conduct all of its activities in accordance with applicable antitrust and competition laws. It is therefore extremely important that attendees adhere to meeting agendas, and be aware of, and not participate in, any activities that are prohibited under applicable US state, federal or foreign antitrust and competition laws.

Examples of types of actions that are prohibited at Linux Foundation meetings and in connection with Linux Foundation activities are described in the Linux Foundation Antitrust Policy available at http://www.linuxfoundation.org/antitrust-policy. If you have questions about these matters, please contact your company counsel, or if you are a member of the Linux Foundation, feel free to contact Andrew Updegrove of the firm of Gesmer Updegrove LLP, which provides legal counsel to the Linux Foundation.

Remembering Shuli

Anyone wishing to leave a memorial can do so at <u>https://github.com/lf-energy/memorials/blob/main/shuli-goodman.md</u>

Those wishing to make a donation in her memory can do so at <u>https://crowdfunding.lfx.linuxfoundation.org/initiative/aaa421b9-c10b-4e</u> <u>68-9233-26608cf54187</u>

The Power of Together

Agenda

Opening (15 Minutes) 5:00 - 5:15 pm

- Landscape updates
- TAC Sponsors for projects
- Summary of last TAC and Board meeting

TAC Business (75 Minutes) 5:15-6:25 pm

- OpenFIDO Presentation 5:15- 5:35 pm
- Seapath Annual Review 5:35-6:00 pm
- Marketing for Projects 6:00- 6:10 pm

Closing and Next Meeting (5 Minutes) 6:10-615 pm

Project Review Cycle

Project	Current Level	Initially Accepted	Last Review Date	Next Review Date
SEAPATH	Incubation	October 6, 2020	November 23, 2021	January 17, 2023
Hyphae	Incubation	December 8, 2020	December 14, 2021	Reschedule
FledgePOWER	Incubation	February 11, 2021	February 15, 2022	February 28, 2023
sogno	Early Adoption	October 27, 2020	March 8, 2022	March 21, 2023
OCPP Cloud Connector	Sandbox	March 8, 2022		March 21, 2023
Shapeshifter	Incubation	April 6, 2021	April 19, 2022	April 11, 2023
Grid Capacity Map	Incubation	April 27, 2021	July 12, 2022	June 18, 2023
OperatorFabric	Early Adoption	April 30, 2019	June 21, 2022	June 20, 2023
Compas	Incubation	May 5, 2020	July 12, 2022	June 20, 2022
OpenEEmeter	Incubation	June 4, 2019	September 13, 2022	September 26, 2023
GXF	Early Adoption	February 4, 2020	October 4, 2022	October 17, 2023
OpenGEH	Incubation	October 12, 2021	October 4, 2022	October 17, 2023
Arras	Sandbox	July 12, 2022		July 18, 2023
Archimate Working Group	Active	October 4, 2022		October 17, 2023
RTDIP	Sandbox	October 25, 2022		November 7, 2023
OpenSTEF	Incubation	September 21, 2021	October 25, 2022	November 7, 2023
FlexMeasures	Incubation	November 2, 2021	November 15, 2022	November 28, 2023
PowSyBl	Early Adoption	April 30, 2019	November 15, 2022	November 28, 2023
FAWG	Working Group		January 25, 2022	
DAWG	Working Group		January 25, 2022	
EVerest	Incubation	October 12, 2021	December 6, 2022	December 19, 2023
OpenLEADR	Incubation	September 15, 2020	December 6, 2022	December 19 20223

The Power of Together

TAC Voting Members New members in **bold**

Full Name	Account Name	Appointed By		
Boris DOLLEY	RTE (Reseau de Transport dElectricite)	Vote of TSC Committee - OperatorFabric		
Anne Tilloy	RTE (Reseau de Transport dElectricite)	Vote of TSC Committee - PowSyBI		
Carmen Best	Recurve	Vote of TSC Committee - OpenEEmeter		
Jonas van den Bogaard	Alliander	Membership Entitlement		
Maarten Mulder	Alliander	Vote of TSC Committee - GXF		
Benoît Jeanson	RTE (Reseau de Transport dElectricite)	Membership Entitlement		
Antonello Monti	RWTH Aachen University	Vote of TSC Committee - SOGNO		
Art Pope	Google	Membership Entitlement		
Avi Allison	Microsoft	Membership Entitlement		
Bryce Bartmann	Shell	Membership Entitlement		

LF Energy Hosted Project and Working **Group Leads** Changes in **bold**

Project	Project Lead(s)			
PowSyBl	Anne Tilloy, RTE			
OperatorFabric	Boris Dolley, RTE			
OpenEEmeter	Carmen Best, Recurve			
GXF	Maarten Mulder, Alliander			
SOGNO	Antonello Monti, RWTH Aachen University			
Compas	Frederic Fouseret, RTE & Sander Jansen, Alliander (TAC Representative)			
FledgePOWER	Akli Rahmoun, RTE			
Hyphae	Asimenia Korompili, RWTH Aachen University			
openLEADR	Lonneke Driessen & Stan Janssen, OpenADR			
SEAPATH	Aurelien Watare, RTE			
Grid Capacity Map	Per Lysemose Hansen, Energinet			
Shapeshifter	Jelle Wijnja, Alliander			
OpenSTEF	Frank Kreuwel, Alliander			
EVerest	Marco Möller, PIONIX			
OpenGEH	Per Lysemose Hansen, Energinet			
FlexMeasures	Nicolas Höning, Seita Energy Flexibility B.V.			
OCPP Cloud Connector	Rebecca Wolkoff, Chargenet			
Arras	David Chassin, SLAC			
Dynawo				
Full Architecture WG (FAWG)	Benoît Jeanson, RTE			
Real Time Data Ingestion Platform (RTDIP)	Bryce Bartmann			
Carbon Data Specification Consortium (CDSC)	TBD			

Landscape now with more project info!

We are using the LF Energy Landscape to showcase more project information:

- Mailing List/Slack Channel
- LFX Insights -
- SBOM
- Wiki
- TSC Meeting Notes
- Calendar

Contribution Guidelines

ACTION: Project leads please review your entry and ensure it is accurate; issue PR for any changes needed.

	more total: 🔿 ★ 52					
Crunchbase	crunchbase.com/organization/lf-energy					
LinkedIn	linkedin.com/company/lf-energy					
Twitter	@LFE_Foundation Latest Tweet this week					
First Commit	5 years ago Latest Commit 3 wee					
Contributors	35	Headcount	1-10			
Headquarters	San Francisco, California					
Mailing List	https://lists.lfenergy.org/g/sogno-discussion					
Slack Channel	#sogno					
LFX Insights	https://insights.lfx.linuxfoundation.org/projects/lfenergy%2Fsogno					
Wiki Page	https://wiki.lfenergy.org/display/HOME/SOGNO					
SBOM	https://github.com/lfscanning/spdx-lfenergy/tree/main/sogno					
TSC Meeting Notes	https://github.com/sogno-platform/tsc/tree/master/tsc/meetings					
Calendar	https://lists.lfenergy.org/g/sogno-tsc/calendar					
Contribution Guidelines	https://github.com/sogno-platfo	orm/tsc/blob/master/CONT	RIBUTING.md			

TAC Sponsors for Projects

As part of the benefit for LF Energy projects, the TAC has a sponsor for each project.

"Appointment of an existing TAC member by the TAC that will act as a sponsor of the project and provide recommendations regarding governance best practices."

ASK: Volunteer to be a TAC sponsor for a project

Current Level	TAC Sponsor
Working Group	
Sandbox	Antonello Monti
Incubation	
Standards	
Incubation	Art Pope
Incubation	
Incubation	Benoît Jeanson
Incubation	
Working Group	
Incubation	
Early Adoption	Jonas van den Bogaard
Incubation	Antonello Monti
Sandbox	Bryce Bartmann
Incubation	Carmen Best
Incubation	
Incubation	
Incubation	Jonas van den Bogaard
Early Adoption	Boris Dolley
Early Adoption	Anne Tilloy
Sandbox	
Incubation	Benoît Jeanson
Incubation	Jonas van den Bogaard
Early Adoption	Antonello Monti
	Working Group Sandbox Incubation Standards Incubation Incubation Incubation Working Group Incubation Early Adoption Incubation Incubation Incubation Early Adoption Early Adoption Early Adoption Early Adoption Early Adoption Incubation

The Power of Together

ILFENERGY

Possible Energy industry TODO Group chapter

- TODO Group (<u>todogroup.org</u>) is an organization within the Linux Foundation focusing on support and promotion of Open Source Program Offices (OSPOs)
- TODO Group has a community network under the OSPOlogy (<u>https://github.com/todogroup/ospology</u>) brand, along with numerous chapters for geos
 - Europe is one that Alliander participates in.
- Gauging interest if forming a TODO Group chapter for the Energy industry. Goals would be:
 - Build resources and share best practices for specific OSPO implementations in the Energy industry (specifically around regulations and standards)
 - Have a networking/mentoring forum for LF Energy member organizations in building their OSPOs

DISCUSSION: Is this of interest/value?

Summary of Last TAC Meeting

- Meeting notes and deck at <u>https://wiki.lfenergy.org/display/HOME/Technical+Advisory+Council#</u> <u>TechnicalAdvisoryCouncil-MeetingMinutes</u>

Updates from the Board

The Power of Together

Agenda

<u>Opening (15 Minutes) 5:00 - 5:15 pm</u>

- Landscape updates
- TAC Sponsors for projects
- Summary of last TAC and Board meeting

TAC Business (75 Minutes) 5:15-6:25 pm

- OpenFIDO Presentation 5:15- 5:35 pm
- Seapath Annual Review 5:35-6:00 pm
- Marketing for Projects 6:00- 6:10 pm

Closing and Next Meeting (5 Minutes) 6:10-615 pm

OpenFIDO Presentation

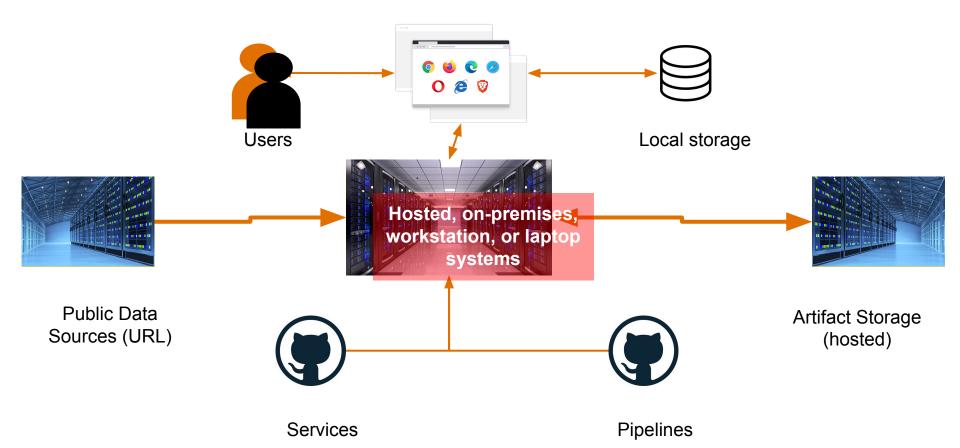
Open Framework for Integrated Data Operations Linux Foundation Energy

David P. Chassin, Manager,

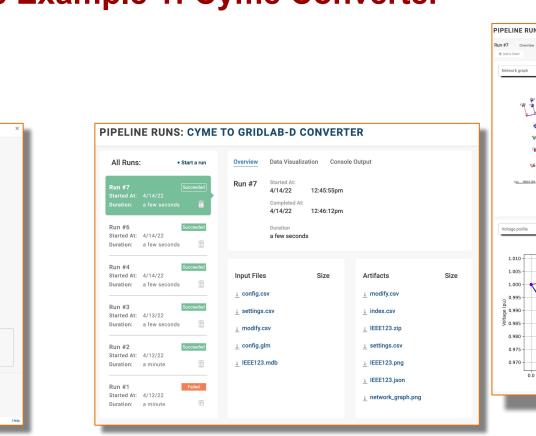
Grid Integration Systems and Mobility

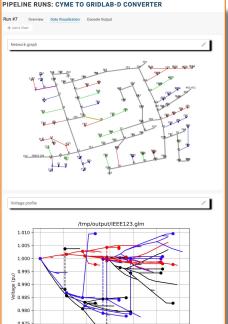
17 January 2023

SLAC National Accelerator Laboratory is operated by Stanford University for the US Department of Energy under Contract DE-AC02-SF00515


SLAC National Accelerator Laboratory Grid Integration Systems and Mobility

- Run by Stanford University
- Laboratory missions
 - High Energy Physics
 - Photon Science
 - Cosmology
 - Applied Energy
- Materials science
 - Batteries
 - Photovoltaics
- Resource integration
 - Load electrification
 - Demand response
 - Power systems


OpenFIDO Technical Approach: Platform architecture

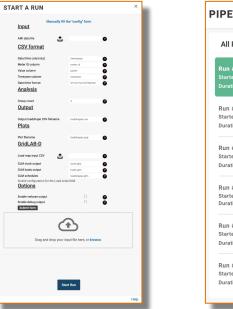


OpenFIDO Pipeline Examples

OpenFIDO	× +	nes Q 🖞 🦁 🏕	*
David Chassin		d Pipeline	★ □ C Update Ξ OpenFIDO ∨
	CYME to GridLAB-D converter	Last run completed 7 months ago	View Runs 🧪
USERS SETTINGS	Electrification		View Runs 🧷
	GRIP Anticipation	Last run completed a year ago	View Runs 🧷
	HiPAS GridLAB-D	Last run completed 7 months ago	View Runs 🧷
	Integration Capacity Analysis	Last run completed 2 years ago	View Runs 🧷
	Loadshape analysis	Last run completed 3 months ago	View Runs 🥒
	NERC Load Composition Data	Last run completed 2 years ago	View Runs 🧷
	Tariff design	Last run failed 6 months ago	View Runs 🧪
Help	Weather	Last run completed 6 months ago	View Runs 🧷

😑 😑 🏾 🌋 OpenFIDO	× +		~
d ⊳ C Ω	app.openfido.org/pipelines	ବ 🛆 । 🦁 🚣	🗯 🔲 🖙 Update 😑
David Chassin	PIPELINES Add a pipeline		OpenFIDO 🗸
PIPELINES USERS SETTINGS	Import from Github		
Help			

Distance (miles)


Pipeline Example 1: Cyme Converter

START A RUN

0.2 0.4 0.6 0.8 1.0 1.2

Pipeline Example 2: Loadshape analysis

I Runs:	:	+ Start a run	Overview	Data Visualiza	ation Conse	ole Ou	tput
un #9 tarted At: uration:	8/9/22 a minute	Succeeded	Run #9	Started At: 8/9/22 Completed At: 8/9/22	10:47:50am 10:49:14am		
un #8 arted At: uration:	5/4/22 a minute	Succeeded		Duration a minute			
un #7 arted At: uration:	5/4/22 a minute	Succeeded	Input Files		Size		Artifacts
IN #6 arted At: iration:		Not Started	⊥ loadmap ⊥ config.c).CSV			⊥ loadshapes.csv ⊥ loads.glm
un #4 arted At: iration:	4/14/22 a minute	Succeeded					⊥ loadshapes.glm ⊥ clock.glm
IN #2 arted At: iration:	4/12/22 a minute	Succeeded					⊥ loadshapes.png

History

LoadInsight

Developed to provide load composition data to NERC
 History

- VADER Prototype (2016-2018)
- Open-source tools by US Department of Energy
- Designed to deliver tools and integrate data streams
 OpenFIDO
- Funded by California Energy Commission (CEC)
- In development at SLAC since 2018
- Collaboration with Hitachi and Southern California Edison

Key stakeholders and users

US Department of Energy

• National Laboratories (PNNL, NREL, ANL, LLNL, SLAC)

SLAC

State Agencies

California Energy Commission

• California Public Utilitios Commission Major Utilities

- Southern California Edison
- National Grid

Academics and Vendors

Hitachi America Laboratories

Key Technical Contributors

DOE version

 David Chassin, Berk Serbetcioglu, and Presence PG

CEC Version

 David Chassin, Derin Serbertcioglu, Alyona Teyber, and Duncan Ragsdale

GitHub Organizations

- openfido (general support)
- slacgismo (developers)

SLAC

Amazon AWS

US (*.openfido.org)

Relevance to LF Energy

Benefits from inclusion

- Increased visibility
- Support broad adoption
- Stabilize grant funding
- Market guidance
- Technical expertise
- Open-source experience
- Project collaborations

Good Candidate

• Energy infrastructure

- Engineering tool
- Focus on major issues
 - Climate response
 - Technology impacts
 - Infrastructure resilience
- Users include
 - Researchers
 - Industry
 - Regulators
 - Policy_makers

Alignment with LF Energy mission

Fit with LFE Charter

Direct/manage activities

Specific Needs

- Awareness and outreach
- Marketing support
- Training users/developers
- OpenFIDO as a platform

OpenFIDO Relates to Energy

- Energy analytics
- Resource integration
- Distribution analysis
- Demand response
- Climate change
- Market transformation
- Technology adoption

Specific needs met by GridLAB-D

Opensource tool

 No use fee/subscription (academics, agencies, publics)

- Access to DOE expertise (community of knowledge)
- Forward looking models (technology that are coming)
- *Climate use-cases* (decarb, resilience, hosting capacity)

Impacts on Energy Industry

Existing use-cases

- Tariff design
- Electrification
- GridLAB-D simulation
- Cyme data extraction
- Grid resilience
- Hosting capacity analysis

Emerging use-cases

• Transactive energy rates

SLAC

- Deep electrification
- Decarbonization
- Energy storage solutions
- Climate resilience

Industry collaborations

- Identify new use-cases
- Develop new capabilities

Relationship with Other LF Energy projects

Simulation support/cases

- <u>Arras</u>: grid simulation
- <u>CDS</u>: emissions impacts
- <u>ComPAS</u>: DERs
- <u>EVrest</u>: EV charging
- <u>FledgePower</u>: DERs, IoT
- <u>FlexMeasures</u>: DR
- Grid Capacity Map: ICA
- <u>GXF</u>: Transactive Energy

- <u>Hyphae</u>: extreme weather
- OpenEEmeter: load forecast
- OpenGEH: Transactive
- <u>openLEADR</u>: Transactive with OpenADR
- OpenSTEF: MLE solvers
- PowSyBl: open solver links
- <u>Shapeshifter</u>: Transactive

Potential Beneficiaries

Researchers

• Earliest adopters; includes National Labs and universities

Utility planners

• Long term load forecasting, resilience analysis, climate change impacts studies, decarbonization planning

SLAC

Utility operators

• Wildfire studies and public safety power shutoffs (PSPS)

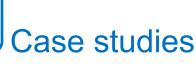
Policy-makers

- CVR/VVC (conservation), DSO+T (transactive energy)
 Regulators
 - Tariff design, electrification, resilience, hosting capacity

Other Potential Interested Parties

Hitachi America Laboratories (GLOW integration)

HITACHI Inspire the Next


US Department of Fnergy (research product delivery)

Future Plans for Growth

SLAC

CASE

Developer community

New use-cases

Technical Minutiae

Current license: BSD-3

Source location

<u>https://source.gridlabd.us/</u>

Technical Meetings

 Annually in September (hosted by Gridworks)

Code of Conduct

DOE Contract for SLAC

Project leadership

SLAC PI: David Chassin

SLAC

Roadmaps/versions

- Research (DOE)
- Commercial (SLAC)

Next major releases

• SLAC (early 2023)

Online documentation

<u>https://help.openfido.org/</u>

Competition

-SLAC

DOE Labs prohibited from developing products that compete with commercial/industrial products

 No open-source products in power and energy with similar scope and impact

Multiple Channels to Market Approach

<u>https://app.openfido.org/</u> is a demo of potential platform

Seapath Annual Review

ILFENERGY

Annual Review for Seapath

Project Annual Review

The Power of Together

Instructions (REMOVE SLIDE IN FINAL)

Please use this deck in preparation for your project's annual review. Depending upon your project's stage, the review will have different points.

Incubation project:

- Review of progress towards Early Adoption Stage

Early Adoption project:

- Review of progress towards Graduated Stage

Graduated project:

- Review of project maintaining positive growth and adoption

Please use the appropriate section in this deck for building the review deck. Add additional slides for addressing specific review points.

Each project has 20 minutes for both their presentation and Q/A, so plan your presentation accordingly.

DLFENERGY Project Annual Review

Seapath

Brief Description:

SEAPATH, Software Enabled Automation Platform and Artifacts (Therein), aims at developing a "reference design" and "industrial grade" open source real-time platform that can run virtualized automation and protection applications (for the power grid industry in the first place and potentially beyond). This platform is intended to host multi-provider applications.

TSC Chairperson:

Aurelien Watare (aurelien.watare@rte-france.com)

TSC Members and Affiliations:

Eloi Bail (Savoir-faire Linux) / TAC representative Tony Milne (Advantech) Ferry Huberts (Locamation) Sander Janson (Alliander)

Contributed by:

Savoir-faire Linux, RTE, Alliander, GE Renewable Energy

Key Links

Github: https://github.com/seapath

Website: <u>https://www.lfenergy.org/projects/seapath/</u> Artwork: N/A

Mailing lists:

- <u>https://lists.lfenergy.org/g/SEAPATH</u>
- Slack LFEnergy #seapath (49 members)

OpenSSF Best Practice Badge URL:

https://bestpractices.coreinfrastructure.org/en/projects/5398

TLFENERGY Project Annual Review

Incubation Project review criteria

To be considered for the Incubation Stage, the project must meet the following requirements:

- Have an open and documented technical governance, including:
 - A LICENSE file in every code repository, with the license chosen an OSI-approved license.
 - A README file welcoming new community members to the project and explaining why the project is useful and how to get started.
 - A CONTRIBUTING file explaining to other developers and your community of users how to contribute to the project. The file should explain what types of contributions are needed and how the process works.
 - A CODEOWNERS or COMMITTERS file to define individuals or teams that are responsible for code in a repository; document current project owners and current and emeritus committers.
 - A CODE_OF_CONDUCT file that sets the ground rules for participants' behavior associated and helps to facilitate a friendly, welcoming environment. By default projects should leverage the Linux Foundation Code of Conduct unless an alternate Code of Conduct is approved prior.
 - A RELEASE file that provides documentation on the release methodology, cadence, criteria, etc.
 - A GOVERNANCE file that documents the project's technical governance.
 - A SUPPORT file to let users and developers know about ways to get help with your project.
- Complete and approve the Technical Charter and agree to transfer any relevant trademarks to The Linux Foundation or its affiliate, LF Projects, LLC, and to assist in filing for any relevant unregistered ones.

Incubation Project review criteria (continued)

- Have achieved and maintained an <u>OpenSSF Best Practices Badge</u> at the <u>'Passing' level</u>.
- Have had a successful license scan with any critical issues remedied.
- Have a defined project mission and scope
- An overview of the project's architecture and features defined.
- The project roadmap defined, which should address the following questions.
 - What use cases are possible now?
 - What does the next year look like in terms of additional features and use cases covered?
- Community and contributor growth assessment
 - The current number of contributors and committers, and the number of different organizations contributing to the project.
 - Demonstrate a sustained flow of commits / merged contributions
 - A credible plan for developing a thriving user community, in particular expanding the number of committers and contributors?
 - An outline of the plan for the project to complete the requirements for the Early Adoption stage
- Receive the affirmative majority vote of the TAC.

DLFENERGY Project Annual Review

Early Adoption Project review criteria

To be considered for the Early Adoption stage, the project must meet the following requirements:

- Demonstrate growth in the project's community, including
 - Growth in the number of commits to the project, number of project committers, and organizational diversity of contributions and committers. [1]
 - Production or planned production use of the project by at least two independent end users which, in the TAC's judgment, are of adequate quality and scope. [1]
- Technical Governance of the project is operational, as measured by:
 - A Technical Steering Committee with at least 5 members and a chairperson elected by the members, holding regular open meetings. [1]
 - Achievement of the OpenSSF Best Practice badge at the 'Silver' Level [✓] 64% completed
- Development of a growth plan, to be done in conjunction with their project mentor(s) at the TAC. This plan should address the following points:
 - Since these metrics can vary significantly depending on the type, scope, and size of a project, the TAC has final judgment over the level of activity that is adequate to meet these criteria. [1]
 - Release plans for the next 18 months. [
 - Target end-users. [
 - Identification of any regulatory or standards body requirements for deployment, and plans for implementation. [1]
 - Plans for growth of project contributors and committers to support the growth plan. [
 - Identification of any infrastructure resources needed to fulfill the growth plan $[\checkmark]$
- Presentation to the TAC of the project's growth, technical governance, and growth plan.
- Receive the affirmative majority vote of the TAC and Governing Board

DLFENERGY Project Annual Review

Early Adoption/Graduation Project review criteria

To graduate from Incubation or Early Adoption status, or for a new project to join with Graduated status, a project must meet the Early Adoption stage criteria plus:

- Have a defined governing body of at least 5 or more members (owners and core maintainers), of which no more than 1/3 is affiliated with the same employer. In the case there are 5 governing members, 2 may be from the same employer.
- Have fulfilled or are on track to complete the growth plan defined in the Early Adoption stage proposal.
- Have a healthy number of contributions or committers from at least three organizations, with any single organization not composing more than 50% of the contributions or committers. Committers must be identified within the project in a COMMITTERS file.
- Have a public list of project adopters for at least the primary repo (e.g., <u>ADOPTERS.md</u> or logos on the project website).
- Achievement of the OpenSSF Best Practices badge at the 'Gold' level.
- Present to the TAC and the Governing Board on the fulfillment of these requirements.
- Receive a ³/₃ majority vote from the TAC and a majority vote of the Governing Board to move to the Graduated stage.

Projects can move directly from Incubation to Graduated status if they can demonstrate sufficient maturity and have
 The Power of logether
 Annual Review
 Annua


Contributions [1/2]

Project Trends

📋 Past 3 Years

Contributor Strength

Unique aggregate contributors across all hosted projects.

TLFENERGY Project Annual Review

Contributions [2/2]

Home / LF Energy (LFE) / SEAPATH / Technical Contributors / Organizations You are using the NEW Insights! Go back to the previous version. DLFENERGY Organizations SEAPATH 📋 Past 3 Years < Share **Top 10 Organizations** Order by: Commits V **Pull Request Activities** Name Logo Contributors Last Activity Commits LOC Added LOC Deleted **Issue Activities** Savoir-faire Savoir-faire Linux 9 12/20/2022 1.23K 65.24K 31.73K 434 48 RTE (Reseau de Transport Le réseau de transport d'électricité Rie 222 20.27K 3.13K 342 14 3 12/19/2022 dElectricite) International Business M 3 0 0 1 10/07/2020 0 0 Machines Corporation Linaro 12/08/2021 2 31 4 19 10 Linaro Limited 1 BBC BBC 1 12/03/2021 1 2 0 0 0

Organizations contributing and/or using in production

The Power of Together 44

Key Achievements in the past year

- Full configuration of real-time cluster based on Ansible playbooks
- Use of Seapath with several industrial companies
 - Manage to run several critical applications
 - Plan to use it in production in 2023
- Enhance IT tooling
- Cybersecurity ANSSI
- Creation of Seapath-debian
 - Add the ability to use Seapath with pre-built packages

Keys achievements [1/2]

Functionnalities	Branch	Feature Description	Status
Ability to host virtual machines that can run real-time applications			
Linux OS with real time kernel and KVM	Debia 🔻		done
Customize the Linux OS to ensure the real-time behavior of virtual machines	Debia 🔻	in yocto it's is done during the configuration of the image, before it's is build from source code. In debian it is a ansible playbook that is applied once the image is installed	done
Prepare the system to isolate resources from real time machine	Debia 🔻	it's done by applying ansible playbooks and using	done
Monitor the performance with dedicated tools	Debia 🔻	cyclictest are included in the CI and are launch through a playbook	on going
Write a white paper on the subject	Debia 🔻	white paper that explain the strategy	not started
Ensuring Security and Compliance through Access to Necessary Tools and	Resources		
Hardening of the OS (yocto)	(Yocto 👻	compliant with lots of requirements of the french ANSII NT28 standard. Test has been added to validate the behaviour	done
Hardening of the OS (debian)	Debian 🝷	où sont les tests ?	on going
	Debia 💌		on going
Implementing High Availability Cluster Feature for Resources (Virtual Machi	nes, Virtual Netwo	rks, Storage)	
Cluster	Debia 🔻	based on corosync and pacemaker	done
Distributed storage	Debia 🔻	based on Ceph and rbd	done
Recommanded architecture for 3 nodes	Debia 🔻	architecture in triangle without external switches	done
Capability to Automatically Track and Evaluate the Impacts of Modifications	on the Platform th	nrough Extensive Testing	
CI yocto	Debia 🔻	tests are done by lauching ansible playbooks via jenkins each time there is a change on the meta-seapath repo	done
CI debian	Debian 🝷	redesign of the CI with github action and integration of business tests (IEC61850)	on going
Ensuring Remote Monitoring, Supervision, and Administration of the Platfor	m		
Deploy and configure the cluster	Debia 🔻	the deployment is deployed with ansible. All that is needed is to install the OS on each machine and to complete the inventories	done
Deploy and configure the virtual networks	Debia 🔻	the configuration of Ovs is done with ansible	done
Monitor the state of the cluster	Debia 🔻	the monitoring is done via SNMP	done
Facilitating Consistent and Standardized Remote Deployment of Updates or	the Platform		
Snapshot the system with LVM + APT	Debian 💌	it is possible to make a snapshot of the system before updating it	done
A / B system update with swupdate and hawkbit	(Yocto 👻	A/B partition strategyand rollback in case of failure	done
Ensuring High Performance and Accurate Delay and Jitter Prediction in the	Virtual Network		
Benchmark and test of the different solutions eBPF,SR-IOV,DPDK	Debia 🔻	Comparative studies has been made and several solutions coud be implemented	done
Specify a solution depending on the performance needed and implement it in the platform	Debia 🔻	proposed a solution that have the minimum level of complexity while ensuring the performance needed for IEC61850 SV streams and a low footprint	on going
Implement of the specified solution	Debia 🔻		not started

Project Annual Review

Keys achievements [2/2]

Facilitating Easy Deployment of Virtual Machines for Users through Clear Guidelines and User-Friendly Tools

Facilitating Easy Deployment of Vintual Machines for Osers through Clear Guid	ennes and Oser-	Filendly roots	
Create VMs	Debia 🔹		done 🔻
Start/Stop VMs	Debia 🔹	The vm-manager tool is used to manage virtual machines within a cluster, and it is capable of handling various functionalitie. Additionally, Ansible can be used to automate the actions of vm-manager, enabling the simultaneous management of multip	done 🔻
Disable/Enable VMs	Debia 🔹		done 💌
Deploy multiple VMs	Debia 🔹	VMs	done 🔻
Allowing Users to View and Modify Current Configuration of Virtual Machines a	nd Handle Rollb	acks as Needed	
Create and manage snpashot of a VM	Debia 🔹		done 🔻
create/delete colocation constraint	Debia 💌	The vm-manager tool is used to manage virtual machines within a cluster, and it is capable of handling various functionalities Additionally, Ansible can be used to automate the actions of vm-manager, enabling the simultaneous management of multiple VMs.	done 🔻
edit_metadata of a VM that is running in the cluster	Debia 🔻		done 🔻
List Clone/Print status	Debia 🔹	In complement the tool edit_metadata is a graphical tools that can be used to edit the xml file of a VM running in the cluster	done 🔻
Ensuring Hardware-Agnosticism and Independence from Specific Hardware on	the Platform		
Validate if a specific hardware meets the requirements in term of performance	Debia 🔹	Even if we minimized dependencies they are minimum requirements regarding the CPU, and the capability of NIC (SR-IOV) A lab is needed with a CI and advanced testing to be able to give a liste of material that are compliants	on going 💌
Implementing Strong and Reliable Time Synchronization Based on Precision Ti	me Protocol (PT	P)	
Benchmark and test of several solutions	Debia 🔹	The host has to be sync in ptp and the guest sync to the host clock with the PHC and ptpkvm. However the guest also need to retrieve the status of the sync of the host. It can be done through vsock or share folder	(done 🔻
Create a White Paper on the subject	Debia 🔹		not started 💌
Ensuring Scalability and Optimal Performance for Small Systems and Large Cl	usters		
Minimize the footprint of the host	Debia 🔻	Work has been done to minimize the load average of the host OS. The 2 OS (yocto and debian) have a similar footprint	on going 🔹
Minimize the footprint of guests/VM	Debia 🔹	The approach is to give the guests only what's needed to achieve the requiered peformances. It this way it differs from conventionnal realtime approach	on going 👻
Minimize the footprint of the network / virtual network	Debia 🔻	Avoid dedicated full CPUs, filtering and so on	on going 🔹 💌
Cybersecurity			
UserGroup management	Debia 🔹	Manage with ansible	done 🔻
Service minimisation	(Yocto 🔹	image minimal in yocto, work in progress for debian	on going 🔹
Network access restrictions	(Yocto 🔹	Ovs restrictions for yocto, work in progress for debian	on going 🔹
CI Testing	Yocto 🔹	Implementend for yocto, work in progress for debian	on going 🔹
Tools and guidelines to be compliant with national and international cybersecurity ag	e Debia 🔹	work in progress to first match with ANSSI criterias	on going 🔹

TLFENERGY Project Annual Review

Growth Plan

- . Install Seapath in a real substation (without protection application)
- . Multiply POC in utilities
- . Enhance testing with industry real use cases linked to Seapath Github to test:
 - Realtime, Cybersecurity, Cluster
 - VM that includes tools to do IEC61850 tests specifically Sample Values

- ✓ Make Seapath as a reference test platform
- ✓ R&D partnership to create full multi-vendor virtualized digital substation based on Seapath

Write white papers about

- Networking: state of the art on networking for virtualization to match low consumption and performance
- Cybersecurity: policy and test developped based an ANSI standard

Share the state of the art

Configuration tools to adapt Seapath for all substation configurations

DLFENERGY Project Annual Review

Areas the project could use help on

- . Give more exposure to the Seapath project
- . Enhance the collaboration with other LF Energy projects

Feedback on working with LF Energy

- LF Energy provides a clear governance to
 - ✓ Facilitate the open sourcing of code
 - ✓ Enrol industrials to use / collaborate
- TSC / TAC provides the an international framework of industrial collaboration

TAC Open Discussion

1 LFENERGY

The Power of Together

Seapath Annual Review

Marketing for Projects

Marketing and PR Updates

dbrown@linuxfoundation.org +1 415-420-7880

- Digital transformation readiness research survey is closed; analysis in process
- Energy Devroom secured at FOSDEM, Saturday, February 4, 2023 both in person in Brussels and virtual
- LF Energy table at State of Open Con Feb 7-8 in London
- Opportunity to attend Tech for Climate Action in Washington, DC on March 16 at no cost: <u>http://www.techforclimateaction.com/us</u>
- Owned 2023 Events
 - SustainabilityCon at Open Source Summit
 - May 10-12 Vancouver; Sept 19-21 Bilbao
 - LF Energy Summit
 - June 1-2 Paris, hosted by RTE
 - CFP open through Feb 17 submit a proposal at <u>https://events.linuxfoundation.org/lfenergysummit/</u>
 - Sponsorships available; reach out to Dan to book
 - Embedded Open Source Summit
 - June 27-30 Prague (Will include a one-day LF Energy track focused on our embedded projects)
- Outreach committee kickoff meeting on Jan 26 if your organization has not appointed a member let Dan know ASAP
- New form now available for all comms/marketing requests (blogs, videos, case studies, etc.): <u>https://github.com/lf-energy/foundation/issues/new/choose</u>

Agenda

<u>Opening (15 Minutes) 5:00 - 5:15 pm</u>

- Landscape updates
- TAC Sponsors for projects
- Summary of last TAC and Board meeting

TAC Business (75 Minutes) 5:15-6:25 pm

- OpenFIDO Presentation 5:15- 5:35 pm
- Seapath Annual Review Annual Review 5:35-6:00 pm
- Marketing for Projects 6:00- 6:10 pm

Closing and Next Meeting (5 Minutes) 6:10-615 pm

Next TAC Meeting

The next meeting of the LF Energy TAC is scheduled for 7 February 2023 at 8:00 am US Pacific Time/11:00 am US Eastern Time/5:00 pm Central European Time.

NOTE: New meeting invite for series titled 'LF Energy TAC meeting (2023)' from 'LF Energy (LFE) - Meetings <<u>meetings@lfx.linuxfoundation.org</u>>'. Register for meeting at: <u>https://zoom-lfx.platform.linuxfoundation.org/meeting/98588947265</u> Please remove all other meeting invites.

Agenda will include:

- Recap of last TAC
- FledgePOWER Annual Review
- Hyphae Annual Review

ILFENERGY

Thank you!